mi-task/utils/detect_track.py
Havoc f5774d97b9 🎨 更新图像处理逻辑,优化边缘检测功能
- 修改 yellow_track_demo.py 中的输入和输出路径,确保使用最新的图像文件
- 在 detect_track.py 中改进掩码处理,添加形态学操作以提升掩码质量
- 优化轮廓检测逻辑,增加边缘检测和直线拟合的步骤,确保检测到的线段更准确
- 更新了相关的观察输出信息,便于调试和分析
2025-05-15 20:16:57 +08:00

315 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import cv2
import numpy as np
from sklearn import linear_model
def detect_horizontal_track_edge(image, observe=False, delay=1000):
"""
检测正前方横向黄色赛道的边缘并返回y值最大的边缘点
参数:
image: 输入图像,可以是文件路径或者已加载的图像数组
observe: 是否输出中间状态信息和可视化结果默认为False
delay: 展示每个步骤的等待时间(毫秒)
返回:
edge_point: 赛道前方边缘点的坐标 (x, y)
edge_info: 边缘信息字典
"""
# 如果输入是字符串(文件路径),则加载图像
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
if img is None:
print("无法加载图像")
return None, None
# 获取图像尺寸
height, width = img.shape[:2]
# 计算图像中间区域的范围(用于专注于正前方的赛道)
center_x = width // 2
search_width = int(width * 2/3) # 搜索区域宽度为图像宽度的2/3
search_height = height # 搜索区域高度为图像高度的1/1
left_bound = center_x - search_width // 2
right_bound = center_x + search_width // 2
bottom_bound = height
top_bound = height - search_height
if observe:
print("步骤1: 原始图像已加载")
search_region_img = img.copy()
# 绘制搜索区域
cv2.rectangle(search_region_img, (left_bound, top_bound), (right_bound, bottom_bound), (255, 0, 0), 2)
cv2.line(search_region_img, (center_x, 0), (center_x, height), (0, 0, 255), 2) # 中线
cv2.imshow("搜索区域", search_region_img)
cv2.waitKey(delay)
# 转换到HSV颜色空间以便更容易提取黄色
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 黄色的HSV范围
lower_yellow = np.array([20, 100, 100])
upper_yellow = np.array([30, 255, 255])
# 创建黄色的掩码
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 添加形态学操作以改善掩码
kernel = np.ones((3, 3), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
if observe:
print("步骤2: 创建黄色掩码")
cv2.imshow("黄色掩码", mask)
cv2.waitKey(delay)
# 应用掩码,只保留黄色部分
yellow_only = cv2.bitwise_and(img, img, mask=mask)
if observe:
print("步骤3: 提取黄色部分")
cv2.imshow("只保留黄色", yellow_only)
cv2.waitKey(delay)
# 裁剪掩码到搜索区域
search_mask = mask[top_bound:bottom_bound, left_bound:right_bound]
# 找到掩码在搜索区域中最底部的非零点位置
bottom_points = []
non_zero_cols = np.where(np.any(search_mask, axis=0))[0]
# 寻找每列的最底部点
for col in non_zero_cols:
col_points = np.where(search_mask[:, col] > 0)[0]
if len(col_points) > 0:
bottom_row = np.max(col_points)
bottom_points.append((left_bound + col, top_bound + bottom_row))
if len(bottom_points) < 3:
# 如果找不到足够的底部点使用canny+霍夫变换
edges = cv2.Canny(mask, 50, 150, apertureSize=3)
if observe:
print("步骤3.1: 边缘检测")
cv2.imshow("边缘检测", edges)
cv2.waitKey(delay)
# 使用霍夫变换检测直线 - 调低阈值以检测短线段
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=30,
minLineLength=width*0.1, maxLineGap=30)
if lines is None or len(lines) == 0:
if observe:
print("未检测到直线")
return None, None
if observe:
print(f"步骤4: 检测到 {len(lines)} 条直线")
lines_img = img.copy()
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(lines_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("检测到的直线", lines_img)
cv2.waitKey(delay)
# 筛选水平线,但放宽斜率条件
horizontal_lines = []
for line in lines:
x1, y1, x2, y2 = line[0]
# 计算斜率 (避免除零错误)
if abs(x2 - x1) < 5: # 几乎垂直的线
continue
slope = (y2 - y1) / (x2 - x1)
# 筛选接近水平的线 (斜率接近0),但容许更大的倾斜度
if abs(slope) < 0.3:
# 确保线在搜索区域内
if ((left_bound <= x1 <= right_bound and top_bound <= y1 <= bottom_bound) or
(left_bound <= x2 <= right_bound and top_bound <= y2 <= bottom_bound)):
# 计算线的中点y坐标
mid_y = (y1 + y2) / 2
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
# 保存线段、其y坐标和长度
horizontal_lines.append((line[0], mid_y, slope, line_length))
if not horizontal_lines:
if observe:
print("未检测到水平线")
return None, None
if observe:
print(f"步骤4.1: 找到 {len(horizontal_lines)} 条水平线")
h_lines_img = img.copy()
for line_info in horizontal_lines:
line, _, slope, _ = line_info
x1, y1, x2, y2 = line
cv2.line(h_lines_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
# 显示斜率
cv2.putText(h_lines_img, f"{slope:.2f}", ((x1+x2)//2, (y1+y2)//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
cv2.imshow("水平线", h_lines_img)
cv2.waitKey(delay)
# 按y坐标排序 (从大到小,底部的线排在前面)
horizontal_lines.sort(key=lambda x: x[1], reverse=True)
# 取最靠近底部且足够长的线作为横向赛道线
selected_line = None
selected_slope = 0
for line_info in horizontal_lines:
line, _, slope, length = line_info
if length > width * 0.1: # 确保线足够长
selected_line = line
selected_slope = slope
break
if selected_line is None and horizontal_lines:
# 如果没有足够长的线,就取最靠近底部的线
selected_line = horizontal_lines[0][0]
selected_slope = horizontal_lines[0][2]
if selected_line is None:
if observe:
print("无法选择合适的线段")
return None, None
x1, y1, x2, y2 = selected_line
else:
# 使用底部点拟合直线
if observe:
bottom_points_img = img.copy()
for point in bottom_points:
cv2.circle(bottom_points_img, point, 3, (0, 255, 0), -1)
cv2.imshow("底部边缘点", bottom_points_img)
cv2.waitKey(delay)
# 使用RANSAC拟合直线以去除异常值
x_points = np.array([p[0] for p in bottom_points]).reshape(-1, 1)
y_points = np.array([p[1] for p in bottom_points])
# 如果点过少或分布不够宽返回None
if len(bottom_points) < 3 or np.max(x_points) - np.min(x_points) < width * 0.1:
if observe:
print("底部点太少或分布不够宽")
return None, None
ransac = linear_model.RANSACRegressor(residual_threshold=5.0)
ransac.fit(x_points, y_points)
# 获取拟合参数
selected_slope = ransac.estimator_.coef_[0]
intercept = ransac.estimator_.intercept_
# 检查斜率是否在合理范围内
if abs(selected_slope) > 0.3:
if observe:
print(f"拟合斜率过大: {selected_slope:.4f}")
return None, None
# 使用拟合的直线参数计算线段端点
x1 = left_bound
y1 = int(selected_slope * x1 + intercept)
x2 = right_bound
y2 = int(selected_slope * x2 + intercept)
if observe:
fitted_line_img = img.copy()
cv2.line(fitted_line_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
cv2.imshow("拟合线段", fitted_line_img)
cv2.waitKey(delay)
# 确保x1 < x2
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
# 找到线上y值最大的点作为边缘点(最靠近相机的点)
if y1 > y2:
bottom_edge_point = (x1, y1)
else:
bottom_edge_point = (x2, y2)
# 获取线上的更多点
selected_points = []
step = 5 # 每5个像素取一个点
for x in range(max(left_bound, int(min(x1, x2))), min(right_bound, int(max(x1, x2)) + 1), step):
y = int(selected_slope * (x - x1) + y1)
if top_bound <= y <= bottom_bound:
selected_points.append((x, y))
if observe:
print(f"步骤5: 找到边缘点 {bottom_edge_point}")
edge_img = img.copy()
# 画线
cv2.line(edge_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 绘制所有点
for point in selected_points:
cv2.circle(edge_img, point, 3, (255, 0, 0), -1)
# 标记边缘点
cv2.circle(edge_img, bottom_edge_point, 10, (0, 0, 255), -1)
cv2.imshow("选定的横向线和边缘点", edge_img)
cv2.waitKey(delay)
# 计算这个点到中线的距离
distance_to_center = bottom_edge_point[0] - center_x
# 计算中线与检测到的横向线的交点
# 横向线方程: y = slope * (x - x1) + y1
# 中线方程: x = center_x
# 解这个方程组得到交点坐标
intersection_x = center_x
intersection_y = selected_slope * (center_x - x1) + y1
intersection_point = (int(intersection_x), int(intersection_y))
# 计算交点到图像底部的距离(以像素为单位)
distance_to_bottom = height - intersection_y
if observe:
slope_img = img.copy()
# 画出检测到的线
cv2.line(slope_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 标记边缘点
cv2.circle(slope_img, bottom_edge_point, 10, (0, 0, 255), -1)
# 画出中线
cv2.line(slope_img, (center_x, 0), (center_x, height), (0, 0, 255), 2)
# 标记中线与横向线的交点
cv2.circle(slope_img, intersection_point, 12, (255, 0, 255), -1)
cv2.circle(slope_img, intersection_point, 5, (255, 255, 255), -1)
# 画出交点到底部的距离线
cv2.line(slope_img, intersection_point, (intersection_x, height), (255, 255, 0), 2)
cv2.putText(slope_img, f"Slope: {selected_slope:.4f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(slope_img, f"Distance to center: {distance_to_center}px", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(slope_img, f"Distance to bottom: {distance_to_bottom:.1f}px", (10, 110),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(slope_img, f"中线交点: ({intersection_point[0]}, {intersection_point[1]})", (10, 150),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("边缘斜率和中线交点", slope_img)
cv2.imwrite("res/path/test/edge_img.png", slope_img)
cv2.waitKey(delay)
# 创建边缘信息字典
edge_info = {
"x": bottom_edge_point[0],
"y": bottom_edge_point[1],
"distance_to_center": distance_to_center,
"slope": selected_slope,
"is_horizontal": abs(selected_slope) < 0.05, # 判断边缘是否接近水平
"points_count": len(selected_points), # 该组中点的数量
"intersection_point": intersection_point, # 中线与横向线的交点
"distance_to_bottom": distance_to_bottom, # 交点到图像底部的距离
"points": selected_points # 添加选定的点组
}
return bottom_edge_point, edge_info
# 用法示例
if __name__ == "__main__":
pass