mi-task/utils/fisheye.py

119 lines
4.3 KiB
Python

import cv2
import numpy as np
import os
def detect_yellow_distance_from_bottom(image_path, visualize=False):
"""
检测鱼眼图像中垂线上最靠近下方的黄点到图像底部的距离
参数:
image_path: 图像路径
visualize: 是否显示检测过程可视化结果
返回:
distance: 黄点到图像底部的距离(像素)
center_x: 黄点的x坐标(用于垂线参考)
mask: 黄色区域掩模(可视化时使用)
"""
# 1. 读取图像并转换色彩空间
img = cv2.imread(image_path)
if img is None:
raise ValueError(f"无法读取图像,请检查路径: {image_path}")
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
height, width = img.shape[:2]
# 2. 定义黄色颜色范围 (考虑不同光照条件)
lower_yellow = np.array([20, 100, 100])
upper_yellow = np.array([30, 255, 255])
# 3. 创建黄色区域掩模
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 4. 形态学处理去除噪声
kernel = np.ones((5,5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
# 5. 寻找轮廓
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
print("未检测到黄色区域")
return None, None, mask
# 6. 找到所有黄色区域的中心点
yellow_points = []
for cnt in contours:
M = cv2.moments(cnt)
if M["m00"] > 100: # 忽略太小的区域
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
yellow_points.append((cx, cy))
if not yellow_points:
print("未找到有效的黄色中心点")
return None, None, mask
# 7. 计算图像中心垂线 (考虑鱼眼畸变,使用图像中心作为参考)
center_x = width // 2
vertical_line_threshold = width * 0.1 # 垂线左右10%的容差范围
# 8. 筛选在垂线附近的黄点
vertical_points = [p for p in yellow_points if abs(p[0] - center_x) < vertical_line_threshold]
if not vertical_points:
# 如果没有完全垂直的点,选择最接近垂线的点
vertical_points = sorted(yellow_points, key=lambda p: abs(p[0] - center_x))[:1]
print(f"警告: 没有严格垂直的点,使用最接近垂线的点: {vertical_points[0]}")
# 9. 找出最下方的黄点
lowest_point = max(vertical_points, key=lambda p: p[1])
# 10. 计算到图像底部的距离
distance = height - lowest_point[1]
# 可视化结果
if visualize:
vis = img.copy()
# 标记所有黄点
for (cx, cy) in yellow_points:
cv2.circle(vis, (cx, cy), 5, (0, 255, 255), -1)
# 标记垂线区域
cv2.line(vis, (center_x, 0), (center_x, height), (0, 255, 0), 1)
cv2.line(vis, (int(center_x - vertical_line_threshold), 0),
(int(center_x - vertical_line_threshold), height), (0, 255, 0), 1)
cv2.line(vis, (int(center_x + vertical_line_threshold), 0),
(int(center_x + vertical_line_threshold), height), (0, 255, 0), 1)
# 标记最低黄点
cv2.circle(vis, lowest_point, 10, (0, 0, 255), -1)
cv2.line(vis, (lowest_point[0], lowest_point[1]),
(lowest_point[0], height), (0, 0, 255), 2)
cv2.putText(vis, f"Distance: {distance}px", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# 确保保存目录存在
os.makedirs("saved_images", exist_ok=True)
# 保存原始图像和结果图像
cv2.imwrite("saved_images/Original_Image.jpg", img)
cv2.imwrite("saved_images/Detection_Result.jpg", vis)
return distance, center_x, mask
# 使用示例
try:
distance, center_x, _ = detect_yellow_distance_from_bottom(
"/home/mi-task/saved_images/right_20250820_120541_263023.jpg",
visualize=True
)
if distance is not None:
print(f"黄点到图像底部的距离: {distance} 像素")
print(f"参考垂线x坐标: {center_x}")
else:
print("未能检测到有效的黄色点")
except Exception as e:
print(f"发生错误: {str(e)}")