mi-task/utils/detect_track.py

924 lines
36 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import cv2
import numpy as np
import os
import datetime
from sklearn import linear_model
from utils.log_helper import get_logger, debug, info, warning, error, success
def detect_horizontal_track_edge(image, observe=False, delay=1000, save_log=True):
"""
检测正前方横向黄色赛道的边缘并返回y值最大的边缘点
优先检测下方横线,但在遇到下方线截断的情况时会考虑上边缘
参数:
image: 输入图像,可以是文件路径或者已加载的图像数组
observe: 是否输出中间状态信息和可视化结果默认为False
delay: 展示每个步骤的等待时间(毫秒)
save_log: 是否保存日志和图像
返回:
edge_point: 赛道前方边缘点的坐标 (x, y)
edge_info: 边缘信息字典
"""
# observe = False # TSET
# 如果输入是字符串(文件路径),则加载图像
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
if img is None:
error("无法加载图像", "失败")
return None, None
# 获取图像尺寸
height, width = img.shape[:2]
# 计算图像中间区域的范围(用于专注于正前方的赛道)
center_x = width // 2
search_width = int(width * 2/3) # 搜索区域宽度为图像宽度的2/3
search_height = height # 搜索区域高度为图像高度的1/1
left_bound = center_x - search_width // 2
right_bound = center_x + search_width // 2
bottom_bound = height
top_bound = height - search_height
# 定义合理的值范围
valid_y_range = (height * 0.5, height) # 有效的y坐标范围下半部分图像
max_slope = 0.15 # 最大允许斜率(接近水平)
min_line_length = width * 0.2 # 最小线长度
if observe:
debug("步骤1: 原始图像已加载", "加载")
search_region_img = img.copy()
# 绘制搜索区域
cv2.rectangle(search_region_img, (left_bound, top_bound), (right_bound, bottom_bound), (255, 0, 0), 2)
cv2.line(search_region_img, (center_x, 0), (center_x, height), (0, 0, 255), 2) # 中线
cv2.imshow("搜索区域", search_region_img)
cv2.waitKey(delay)
# 转换到HSV颜色空间以便更容易提取黄色
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 黄色的HSV范围
lower_yellow = np.array([20, 100, 100])
upper_yellow = np.array([30, 255, 255])
# 创建黄色的掩码
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 添加形态学操作以改善掩码
kernel = np.ones((3, 3), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
if observe:
debug("步骤2: 创建黄色掩码", "处理")
cv2.imshow("黄色掩码", mask)
cv2.waitKey(delay)
# 应用掩码,只保留黄色部分
yellow_only = cv2.bitwise_and(img, img, mask=mask)
if observe:
debug("步骤3: 提取黄色部分", "处理")
cv2.imshow("只保留黄色", yellow_only)
cv2.waitKey(delay)
# 裁剪掩码到搜索区域
search_mask = mask[top_bound:bottom_bound, left_bound:right_bound]
# 找到掩码在搜索区域中最底部的非零点位置
bottom_points = []
non_zero_cols = np.where(np.any(search_mask, axis=0))[0]
# 寻找每列的最底部点
for col in non_zero_cols:
col_points = np.where(search_mask[:, col] > 0)[0]
if len(col_points) > 0:
bottom_row = np.max(col_points)
bottom_points.append((left_bound + col, top_bound + bottom_row))
# 寻找每列的最顶部点(上边缘点)
top_points = []
for col in non_zero_cols:
col_points = np.where(search_mask[:, col] > 0)[0]
if len(col_points) > 0:
top_row = np.min(col_points)
top_points.append((left_bound + col, top_bound + top_row))
if observe:
debug("检测底部和顶部边缘点", "处理")
edge_points_img = img.copy()
for point in bottom_points:
cv2.circle(edge_points_img, point, 3, (0, 255, 0), -1)
for point in top_points:
cv2.circle(edge_points_img, point, 3, (255, 0, 255), -1)
cv2.imshow("边缘点", edge_points_img)
cv2.waitKey(delay)
# 边缘检测
edges = cv2.Canny(mask, 50, 150, apertureSize=3)
if observe:
debug("步骤4: 边缘检测", "处理")
cv2.imshow("边缘检测", edges)
cv2.waitKey(delay)
# 使用霍夫变换检测直线,降低阈值以检测更多线段
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=25,
minLineLength=width*0.1, maxLineGap=30)
if lines is None or len(lines) == 0:
if observe:
error("未检测到直线", "失败")
return None, None
if observe:
debug(f"步骤5: 检测到 {len(lines)} 条直线", "处理")
lines_img = img.copy()
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(lines_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("检测到的直线", lines_img)
cv2.waitKey(delay)
# 筛选水平线,但放宽斜率条件
horizontal_lines = []
for line in lines:
x1, y1, x2, y2 = line[0]
# 计算斜率 (避免除零错误)
if abs(x2 - x1) < 5: # 几乎垂直的线
continue
slope = (y2 - y1) / (x2 - x1)
# 筛选接近水平的线 (斜率接近0),但容许更大的倾斜度
if abs(slope) < max_slope:
# 确保线在搜索区域内
if ((left_bound <= x1 <= right_bound and top_bound <= y1 <= bottom_bound) or
(left_bound <= x2 <= right_bound and top_bound <= y2 <= bottom_bound)):
# 计算线的中点y坐标
mid_y = (y1 + y2) / 2
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
# 过滤掉短线段和太靠近图像上部的线
if line_length >= min_line_length and mid_y >= valid_y_range[0]:
# 计算线段在图像中的位置得分(越靠近底部得分越高)
position_score = min(1.0, (mid_y - valid_y_range[0]) / (valid_y_range[1] - valid_y_range[0]))
# 计算长度得分(越长越好)
length_score = min(1.0, line_length / (width * 0.5))
# 计算斜率得分(越水平越好)
slope_score = max(0.0, 1.0 - abs(slope) / max_slope)
# 计算线段位于图像中央的程度
mid_x = (x1 + x2) / 2
center_score = max(0.0, 1.0 - abs(mid_x - center_x) / (width * 0.3))
# 计算综合得分
quality_score = position_score * 0.4 + length_score * 0.3 + slope_score * 0.2 + center_score * 0.1
# 保存线段、其y坐标、斜率、长度和质量得分
horizontal_lines.append((line[0], mid_y, slope, line_length, quality_score))
if not horizontal_lines:
if observe:
error("未检测到合格的水平线", "失败")
return None, None
if observe:
debug(f"步骤6: 找到 {len(horizontal_lines)} 条水平线", "处理")
h_lines_img = img.copy()
for line_info in horizontal_lines:
line, _, slope, _, score = line_info
x1, y1, x2, y2 = line
# 根据得分调整线的颜色,得分越高越绿
color = (int(255 * (1-score)), int(255 * score), 0)
cv2.line(h_lines_img, (x1, y1), (x2, y2), color, 2)
# 显示斜率和得分
cv2.putText(h_lines_img, f"{slope:.2f}|{score:.2f}", ((x1+x2)//2, (y1+y2)//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
cv2.imshow("水平线", h_lines_img)
cv2.waitKey(delay)
# 根据质量得分排序水平线
horizontal_lines.sort(key=lambda x: x[4], reverse=True)
# 取质量最高的线段作为最终选择
selected_line = horizontal_lines[0][0]
selected_slope = horizontal_lines[0][2]
selected_score = horizontal_lines[0][4]
# 提取线段端点
x1, y1, x2, y2 = selected_line
# 确保x1 < x2
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
# 找到线上y值最大的点作为边缘点(最靠近相机的点)
if y1 > y2:
bottom_edge_point = (x1, y1)
else:
bottom_edge_point = (x2, y2)
# 如果得分过低,可能是错误识别,尝试使用边缘点拟合
if selected_score < 0.4 and len(bottom_points) >= 5:
if observe:
debug(f"线段质量得分过低: {selected_score:.2f},尝试使用边缘点拟合", "处理")
# 筛选下半部分的点
valid_bottom_points = [p for p in bottom_points if p[1] >= valid_y_range[0]]
if len(valid_bottom_points) >= 5:
# 使用RANSAC拟合直线以去除异常值
x_points = np.array([p[0] for p in valid_bottom_points]).reshape(-1, 1)
y_points = np.array([p[1] for p in valid_bottom_points])
ransac = linear_model.RANSACRegressor(residual_threshold=5.0)
ransac.fit(x_points, y_points)
# 获取拟合参数
fitted_slope = ransac.estimator_.coef_[0]
intercept = ransac.estimator_.intercept_
# 检查斜率是否在合理范围内
if abs(fitted_slope) < max_slope:
# 计算拟合线的inliers比例
inlier_mask = ransac.inlier_mask_
inlier_ratio = sum(inlier_mask) / len(inlier_mask)
# 如果有足够的内点,使用拟合的直线
if inlier_ratio > 0.5:
# 使用拟合的直线参数计算线段端点
x1 = left_bound
y1 = int(fitted_slope * x1 + intercept)
x2 = right_bound
y2 = int(fitted_slope * x2 + intercept)
selected_slope = fitted_slope
selected_line = [x1, y1, x2, y2]
# 重新计算边缘点
if y1 > y2:
bottom_edge_point = (x1, y1)
else:
bottom_edge_point = (x2, y2)
if observe:
debug(f"使用拟合直线,斜率: {fitted_slope:.4f}, 内点比例: {inlier_ratio:.2f}", "处理")
fitted_line_img = img.copy()
cv2.line(fitted_line_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
for i, point in enumerate(valid_bottom_points):
color = (0, 255, 0) if inlier_mask[i] else (0, 0, 255)
cv2.circle(fitted_line_img, point, 3, color, -1)
cv2.imshow("拟合线和内点", fitted_line_img)
cv2.waitKey(delay)
# 获取线上的更多点
selected_points = []
step = 5 # 每5个像素取一个点
for x in range(max(left_bound, int(min(x1, x2))), min(right_bound, int(max(x1, x2)) + 1), step):
y = int(selected_slope * (x - x1) + y1)
if top_bound <= y <= bottom_bound:
selected_points.append((x, y))
# 对结果进行合理性检查
valid_result = True
reason = ""
# 检查边缘点是否在有效范围内
if not (valid_y_range[0] <= bottom_edge_point[1] <= valid_y_range[1]):
valid_result = False
reason += "边缘点y坐标超出有效范围; "
# 检查线段长度
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
if line_length < min_line_length:
valid_result = False
reason += "线段长度不足; "
# 检查是否有足够的点
if len(selected_points) < 5:
valid_result = False
reason += "选定点数量不足; "
# 计算这个点到中线的距离
distance_to_center = bottom_edge_point[0] - center_x
# 检查到中心的距离是否合理
if abs(distance_to_center) > width * 0.8:
valid_result = False
reason += "到中心距离过大; "
# 计算中线与检测到的横向线的交点
# 横向线方程: y = slope * (x - x1) + y1
# 中线方程: x = center_x
# 解这个方程组得到交点坐标
intersection_x = center_x
intersection_y = selected_slope * (center_x - x1) + y1
intersection_point = (int(intersection_x), int(intersection_y))
# 检查交点的y坐标是否在有效范围内
if not (valid_y_range[0] <= intersection_y <= valid_y_range[1]):
valid_result = False
reason += "交点y坐标超出有效范围; "
# 计算交点到图像底部的距离(以像素为单位)
distance_to_bottom = height - intersection_y
# 如果结果无效,可能需要返回失败
if not valid_result and observe:
warning(f"检测结果不合理: {reason}", "警告")
result_img = None
if observe or save_log:
slope_img = img.copy()
# 画出检测到的线
line_color = (0, 255, 0) if valid_result else (0, 0, 255)
cv2.line(slope_img, (x1, y1), (x2, y2), line_color, 2)
# 标记边缘点
cv2.circle(slope_img, bottom_edge_point, 10, (0, 0, 255), -1)
# 画出中线
cv2.line(slope_img, (center_x, 0), (center_x, height), (0, 0, 255), 2)
# 标记中线与横向线的交点
cv2.circle(slope_img, intersection_point, 12, (255, 0, 255), -1)
cv2.circle(slope_img, intersection_point, 5, (255, 255, 255), -1)
# 画出交点到底部的距离线
cv2.line(slope_img, intersection_point, (intersection_x, height), (255, 255, 0), 2)
cv2.putText(slope_img, f"Slope: {selected_slope:.4f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, line_color, 2)
cv2.putText(slope_img, f"Distance to center: {distance_to_center}px", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, line_color, 2)
cv2.putText(slope_img, f"Distance to bottom: {distance_to_bottom:.1f}px", (10, 110),
cv2.FONT_HERSHEY_SIMPLEX, 1, line_color, 2)
cv2.putText(slope_img, f"中线交点: ({intersection_point[0]}, {intersection_point[1]})", (10, 150),
cv2.FONT_HERSHEY_SIMPLEX, 1, line_color, 2)
cv2.putText(slope_img, f"质量得分: {selected_score:.2f}", (10, 190),
cv2.FONT_HERSHEY_SIMPLEX, 1, line_color, 2)
if not valid_result:
cv2.putText(slope_img, f"警告: {reason}", (10, 230),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
if observe:
debug("显示边缘斜率和中线交点", "显示")
cv2.imshow("边缘斜率和中线交点", slope_img)
cv2.waitKey(delay)
result_img = slope_img
# 保存日志图像
if save_log and result_img is not None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_dir = "logs/image"
os.makedirs(log_dir, exist_ok=True)
img_path = os.path.join(log_dir, f"horizontal_edge_{timestamp}.jpg")
cv2.imwrite(img_path, result_img)
info(f"保存横向边缘检测结果图像到: {img_path}", "日志")
# 保存文本日志信息
log_info = {
"timestamp": timestamp,
"edge_point": bottom_edge_point,
"distance_to_center": distance_to_center,
"slope": selected_slope,
"distance_to_bottom": distance_to_bottom,
"intersection_point": intersection_point,
"score": selected_score,
"valid": valid_result,
"reason": reason if not valid_result else ""
}
info(f"横向边缘检测结果: {log_info}", "日志")
# 如果结果无效,可能需要返回失败
if not valid_result:
return None, None
# 创建边缘信息字典
edge_info = {
"x": bottom_edge_point[0],
"y": bottom_edge_point[1],
"distance_to_center": distance_to_center,
"slope": selected_slope,
"is_horizontal": abs(selected_slope) < 0.05, # 判断边缘是否接近水平
"points_count": len(selected_points), # 该组中点的数量
"intersection_point": intersection_point, # 中线与横向线的交点
"distance_to_bottom": distance_to_bottom, # 交点到图像底部的距离
"score": selected_score, # 线段质量得分
# "points": selected_points # 添加选定的点组
}
return bottom_edge_point, edge_info
# 用法示例
if __name__ == "__main__":
pass
def detect_dual_track_lines(image, observe=False, delay=1000, save_log=True):
"""
检测左右两条平行的黄色轨道线
参数:
image: 输入图像,可以是文件路径或者已加载的图像数组
observe: 是否输出中间状态信息和可视化结果默认为False
delay: 展示每个步骤的等待时间(毫秒)
save_log: 是否保存日志和图像
返回:
tuple: (中心线信息, 左轨迹线信息, 右轨迹线信息)
"""
# 如果输入是字符串(文件路径),则加载图像
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
if img is None:
error("无法加载图像", "失败")
return None, None, None
# 获取图像尺寸
height, width = img.shape[:2]
# 计算图像中间区域的范围
center_x = width // 2
# 转换到HSV颜色空间以便更容易提取黄色
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 黄色的HSV范围 - 扩大范围以更好地捕捉不同光照条件下的黄色
lower_yellow = np.array([15, 80, 80]) # 更宽松的黄色下限
upper_yellow = np.array([35, 255, 255]) # 更宽松的黄色上限
# 创建黄色的掩码
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 形态学操作以改善掩码
kernel = np.ones((5, 5), np.uint8) # 增大kernel尺寸
mask = cv2.dilate(mask, kernel, iterations=1)
mask = cv2.erode(mask, np.ones((3, 3), np.uint8), iterations=1) # 添加腐蚀操作去除噪点
if observe:
debug("步骤1: 创建黄色掩码", "处理")
cv2.imshow("黄色掩码", mask)
cv2.waitKey(delay)
# 裁剪底部区域重点关注近处的黄线
bottom_roi_height = int(height * 0.4) # 关注图像底部40%区域
bottom_roi = mask[height-bottom_roi_height:, :]
if observe:
debug("步骤1.5: 底部区域掩码", "处理")
cv2.imshow("底部区域掩码", bottom_roi)
cv2.waitKey(delay)
# 边缘检测
edges = cv2.Canny(mask, 50, 150, apertureSize=3)
if observe:
debug("步骤2: 边缘检测", "处理")
cv2.imshow("边缘检测", edges)
cv2.waitKey(delay)
# 霍夫变换检测直线 - 降低minLineLength以检测到较短的线段
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=25,
minLineLength=width*0.05, maxLineGap=40) # 更宽松的参数
if lines is None or len(lines) == 0:
error("未检测到直线", "失败")
return None, None, None
if observe:
debug(f"步骤3: 检测到 {len(lines)} 条直线", "处理")
lines_img = img.copy()
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(lines_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("检测到的直线", lines_img)
cv2.waitKey(delay)
# 筛选近似垂直的线
vertical_lines = []
for line in lines:
x1, y1, x2, y2 = line[0]
# 优先选择图像底部的线
if y1 < height * 0.5 and y2 < height * 0.5:
continue # 忽略上半部分的线
# 计算斜率 (避免除零错误)
if abs(x2 - x1) < 5: # 几乎垂直的线
slope = 100 # 设置一个较大的值表示接近垂直
else:
slope = (y2 - y1) / (x2 - x1)
# 筛选接近垂直的线 (斜率较大),但允许更多倾斜度
if abs(slope) > 0.75: # 降低垂直线的斜率阈值,允许更多倾斜的线
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
# 计算线的中点x坐标
mid_x = (x1 + x2) / 2
# 计算线的中点y坐标
mid_y = (y1 + y2) / 2
# 保存线段、其坐标、斜率和长度
vertical_lines.append((line[0], mid_x, mid_y, slope, line_length))
if len(vertical_lines) < 2:
error("未检测到足够的垂直线", "失败")
return None, None, None
if observe:
debug(f"步骤4: 找到 {len(vertical_lines)} 条垂直线", "处理")
v_lines_img = img.copy()
for line_info in vertical_lines:
line, _, _, slope, _ = line_info
x1, y1, x2, y2 = line
cv2.line(v_lines_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
# 显示斜率
cv2.putText(v_lines_img, f"{slope:.2f}", ((x1+x2)//2, (y1+y2)//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
cv2.imshow("垂直线", v_lines_img)
cv2.waitKey(delay)
# 优先选择更接近图像底部的线 - 根据y坐标均值排序
vertical_lines.sort(key=lambda x: x[2], reverse=True) # 按mid_y从大到小排序
# 按x坐标将线分为左右两组
left_lines = [line for line in vertical_lines if line[1] < center_x]
right_lines = [line for line in vertical_lines if line[1] > center_x]
# 如果任一侧没有检测到线,则放宽左右两侧线的分组条件
if not left_lines or not right_lines:
# 按x坐标排序所有垂直线
vertical_lines.sort(key=lambda x: x[1])
# 如果有至少两条线,将最左侧的线作为左轨迹线,最右侧的线作为右轨迹线
if len(vertical_lines) >= 2:
left_lines = [vertical_lines[0]]
right_lines = [vertical_lines[-1]]
else:
error("左侧或右侧未检测到轨迹线", "失败")
return None, None, None
# 从左右两组中各选择一条最佳的线
# 优先选择同时满足1. 更靠近底部 2. 足够长 3. 更接近中心的线
def score_line(line_info, is_left):
_, mid_x, mid_y, _, length = line_info
# y越大越靠近底部分数越高
y_score = mid_y / height
# 线越长分数越高
length_score = min(1.0, length / (height * 0.3))
# 与预期位置的接近程度
expected_x = center_x * 0.3 if is_left else center_x * 1.7
x_score = 1.0 - min(1.0, abs(mid_x - expected_x) / (center_x * 0.5))
# 综合评分
return y_score * 0.5 + length_score * 0.3 + x_score * 0.2
# 对左右线组进行评分并排序
left_lines = sorted(left_lines, key=lambda line: score_line(line, True), reverse=True)
right_lines = sorted(right_lines, key=lambda line: score_line(line, False), reverse=True)
left_line = left_lines[0]
right_line = right_lines[0]
# 获取两条线的坐标
left_x1, left_y1, left_x2, left_y2 = left_line[0]
right_x1, right_y1, right_x2, right_y2 = right_line[0]
# 确保线段的顺序是从上到下
if left_y1 > left_y2:
left_x1, left_x2 = left_x2, left_x1
left_y1, left_y2 = left_y2, left_y1
if right_y1 > right_y2:
right_x1, right_x2 = right_x2, right_x1
right_y1, right_y2 = right_y2, right_y1
# 计算中心线
center_line_x1 = (left_x1 + right_x1) // 2
center_line_y1 = (left_y1 + right_y1) // 2
center_line_x2 = (left_x2 + right_x2) // 2
center_line_y2 = (left_y2 + right_y2) // 2
# 计算中心线的斜率
if abs(center_line_x2 - center_line_x1) < 5:
center_slope = 100 # 几乎垂直
else:
center_slope = (center_line_y2 - center_line_y1) / (center_line_x2 - center_line_x1)
# 计算中心线延伸到图像底部的点
if abs(center_slope) < 0.01: # 几乎垂直
bottom_x = center_line_x1
else:
bottom_x = int(center_line_x1 + (height - center_line_y1) / center_slope)
center_point = (bottom_x, height)
# 计算中心线与图像中心线的偏差
deviation = bottom_x - center_x
result_img = None
if observe or save_log:
result_img = img.copy()
# 绘制左右轨迹线
cv2.line(result_img, (left_x1, left_y1), (left_x2, left_y2), (255, 0, 0), 2)
cv2.line(result_img, (right_x1, right_y1), (right_x2, right_y2), (0, 0, 255), 2)
# 绘制中心线
cv2.line(result_img, (center_line_x1, center_line_y1), (center_line_x2, center_line_y2), (0, 255, 0), 2)
cv2.line(result_img, (center_line_x2, center_line_y2), center_point, (0, 255, 0), 2)
# 绘制图像中心线
cv2.line(result_img, (center_x, 0), (center_x, height), (0, 0, 255), 1)
# 标记中心点
cv2.circle(result_img, center_point, 10, (255, 0, 255), -1)
# 显示偏差信息
cv2.putText(result_img, f"Deviation: {deviation}px", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if observe:
cv2.imshow("轨迹线检测结果", result_img)
cv2.waitKey(delay)
# 保存日志图像
if save_log and result_img is not None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_dir = "logs/image"
os.makedirs(log_dir, exist_ok=True)
img_path = os.path.join(log_dir, f"dual_track_{timestamp}.jpg")
cv2.imwrite(img_path, result_img)
info(f"保存双轨迹线检测结果图像到: {img_path}", "日志")
# 保存文本日志信息
log_info = {
"timestamp": timestamp,
"center_point": center_point,
"deviation": deviation,
"left_track_mid_x": left_line[1],
"right_track_mid_x": right_line[1],
"track_width": right_line[1] - left_line[1],
"center_slope": center_slope
}
info(f"双轨迹线检测结果: {log_info}", "日志")
# 创建左右轨迹线和中心线信息
left_track_info = {
"line": left_line[0],
"slope": left_line[3], # 注意索引更改为3因为保存结构更改了
"x_mid": left_line[1]
}
right_track_info = {
"line": right_line[0],
"slope": right_line[3], # 注意索引更改为3
"x_mid": right_line[1]
}
center_info = {
"point": center_point,
"deviation": deviation,
"slope": center_slope,
"is_vertical": abs(center_slope) > 5.0, # 判断是否接近垂直
"track_width": right_line[1] - left_line[1] # 两轨迹线之间的距离
}
return center_info, left_track_info, right_track_info
def detect_left_side_track(image, observe=False, delay=1000, save_log=True):
"""
检测视野左侧黄色轨道线,用于机器狗左侧靠线移动
参数:
image: 输入图像,可以是文件路径或者已加载的图像数组
observe: 是否输出中间状态信息和可视化结果默认为False
delay: 展示每个步骤的等待时间(毫秒)
save_log: 是否保存日志和图像
返回:
tuple: (线信息字典, 最佳跟踪点)
"""
# 如果输入是字符串(文件路径),则加载图像
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
if img is None:
error("无法加载图像", "失败")
return None, None
# 获取图像尺寸
height, width = img.shape[:2]
# 计算图像中间和左侧区域的范围
center_x = width // 2
# 主要关注视野的左半部分
left_region_width = center_x
left_region_height = height
left_bound = 0
right_bound = center_x
bottom_bound = height
top_bound = 0
if observe:
debug("步骤1: 原始图像已加载", "加载")
region_img = img.copy()
# 绘制左侧搜索区域
cv2.rectangle(region_img, (left_bound, top_bound), (right_bound, bottom_bound), (255, 0, 0), 2)
cv2.line(region_img, (center_x, 0), (center_x, height), (0, 0, 255), 2) # 中线
cv2.imshow("左侧搜索区域", region_img)
cv2.waitKey(delay)
# 转换到HSV颜色空间以便更容易提取黄色
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 黄色的HSV范围 - 扩大范围以更好地捕捉不同光照条件下的黄色
lower_yellow = np.array([15, 80, 80]) # 更宽松的黄色下限
upper_yellow = np.array([35, 255, 255]) # 更宽松的黄色上限
# 创建黄色的掩码
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 形态学操作以改善掩码
kernel = np.ones((5, 5), np.uint8) # 增大kernel尺寸
mask = cv2.dilate(mask, kernel, iterations=1)
mask = cv2.erode(mask, np.ones((3, 3), np.uint8), iterations=1) # 添加腐蚀操作去除噪点
if observe:
debug("步骤2: 创建黄色掩码", "处理")
cv2.imshow("黄色掩码", mask)
cv2.waitKey(delay)
# 裁剪左侧区域
left_region_mask = mask[:, left_bound:right_bound]
if observe:
debug("步骤3: 左侧区域掩码", "处理")
cv2.imshow("左侧区域掩码", left_region_mask)
cv2.waitKey(delay)
# 边缘检测
edges = cv2.Canny(mask, 50, 150, apertureSize=3)
if observe:
debug("步骤4: 边缘检测", "处理")
cv2.imshow("边缘检测", edges)
cv2.waitKey(delay)
# 霍夫变换检测直线
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=25,
minLineLength=height*0.15, maxLineGap=50) # 调整参数以检测更长的线段
if lines is None or len(lines) == 0:
error("未检测到直线", "失败")
return None, None
if observe:
debug(f"步骤5: 检测到 {len(lines)} 条直线", "处理")
lines_img = img.copy()
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(lines_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("检测到的直线", lines_img)
cv2.waitKey(delay)
# 筛选左侧区域内的近似垂直线
left_vertical_lines = []
for line in lines:
x1, y1, x2, y2 = line[0]
# 确保线在左侧区域内
if not (max(x1, x2) <= right_bound):
continue
# 计算斜率 (避免除零错误)
if abs(x2 - x1) < 5: # 几乎垂直的线
slope = 100 # 设置一个较大的值表示接近垂直
else:
slope = (y2 - y1) / (x2 - x1)
# 筛选接近垂直的线 (斜率较大)
if abs(slope) > 0.7: # 设置较宽松的垂直线斜率阈值
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
# 计算线的中点坐标
mid_x = (x1 + x2) / 2
mid_y = (y1 + y2) / 2
# 保存线段、其坐标、斜率和长度
left_vertical_lines.append((line[0], mid_x, mid_y, slope, line_length))
if len(left_vertical_lines) == 0:
error("左侧区域未检测到垂直线", "失败")
return None, None
if observe:
debug(f"步骤6: 左侧区域找到 {len(left_vertical_lines)} 条垂直线", "处理")
left_lines_img = img.copy()
for line_info in left_vertical_lines:
line, _, _, slope, _ = line_info
x1, y1, x2, y2 = line
cv2.line(left_lines_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
# 显示斜率
cv2.putText(left_lines_img, f"{slope:.2f}", ((x1+x2)//2, (y1+y2)//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
cv2.imshow("左侧垂直线", left_lines_img)
cv2.waitKey(delay)
# 按线段长度和位置进行评分,优先选择更长且更靠近图像左边的线
def score_left_line(line_info):
_, mid_x, _, _, length = line_info
# 线段越长分数越高
length_score = min(1.0, length / (height * 0.3))
# 越靠近左边分数越高
position_score = 1.0 - (mid_x / center_x)
# 综合评分
return length_score * 0.7 + position_score * 0.3
# 对线段进行评分并排序
left_vertical_lines = sorted(left_vertical_lines, key=score_left_line, reverse=True)
# 选择最佳的左侧线段
best_left_line = left_vertical_lines[0]
line, mid_x, mid_y, slope, length = best_left_line
x1, y1, x2, y2 = line
# 确保线段的顺序是从上到下
if y1 > y2:
x1, x2 = x2, x1
y1, y2 = y2, y1
# 计算最佳跟踪点 - 选择线段底部较靠近机器人的点
tracking_point = (x2, y2) if y2 > y1 else (x1, y1)
# 计算线与地面的交点
# 使用线段的方程: (y - y1) = slope * (x - x1)
# 地面对应图像底部: y = height
# 解这个方程得到交点的x坐标
if abs(slope) < 0.01: # 几乎垂直
ground_intersection_x = x1
else:
ground_intersection_x = x1 + (height - y1) / slope
ground_intersection = (int(ground_intersection_x), height)
# 计算线与图像左边界的距离(以像素为单位)
distance_to_left = mid_x
result_img = None
if observe or save_log:
result_img = img.copy()
# 绘制检测到的最佳左侧线
cv2.line(result_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
# 绘制图像中线
cv2.line(result_img, (center_x, 0), (center_x, height), (0, 0, 255), 1)
# 标记最佳跟踪点和地面交点
cv2.circle(result_img, tracking_point, 10, (0, 255, 0), -1)
cv2.circle(result_img, ground_intersection, 10, (0, 0, 255), -1)
# 显示信息
cv2.putText(result_img, f"斜率: {slope:.2f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(result_img, f"距左边界: {distance_to_left:.1f}px", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(result_img, f"地面交点: ({ground_intersection[0]}, {ground_intersection[1]})", (10, 110),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if observe:
debug("步骤7: 左侧最佳跟踪线和点", "显示")
cv2.imshow("左侧最佳跟踪线和点", result_img)
cv2.waitKey(delay)
# 保存日志图像
if save_log and result_img is not None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_dir = "logs/image"
os.makedirs(log_dir, exist_ok=True)
img_path = os.path.join(log_dir, f"left_track_{timestamp}.jpg")
cv2.imwrite(img_path, result_img)
info(f"保存左侧轨迹线检测结果图像到: {img_path}", "日志")
# 保存文本日志信息
log_info = {
"timestamp": timestamp,
"tracking_point": tracking_point,
"ground_intersection": ground_intersection,
"distance_to_left": distance_to_left,
"slope": slope,
"line_mid_x": mid_x
}
info(f"左侧轨迹线检测结果: {log_info}", "日志")
# 创建线段信息字典
track_info = {
"line": line,
"slope": slope,
"tracking_point": tracking_point,
"ground_intersection": ground_intersection,
"distance_to_left": distance_to_left,
"mid_x": mid_x,
"mid_y": mid_y,
"is_vertical": abs(slope) > 5.0 # 判断是否接近垂直
}
return track_info, tracking_point