- Add odometry thread and message handler for localization data - Update main control loop to incorporate odometry information - Remove task 5 execution from main function - Refactor task 5 implementation to be more modular
770 lines
32 KiB
Python
770 lines
32 KiB
Python
'''
|
||
This demo show the communication interface of MR813 motion control board based on Lcm.
|
||
Dependency:
|
||
- robot_control_cmd_lcmt.py
|
||
- robot_control_response_lcmt.py
|
||
|
||
雷达参数已经能够读取
|
||
替换basic_motion_test_comb中的main.py
|
||
运行代码之前需要执行:
|
||
cd /home/cyberdog_sim
|
||
source /opt/ros/galactic/setup.bash
|
||
|
||
修改代码内容:
|
||
删去全局变量 odo_rec 使用self.odo_msg代替
|
||
删去全局变量 motion_rec 使用self.rec_msg代替
|
||
err_handler函数里面的 motion_rec['switch_status'] 改为 self.rec_msg.switch_status
|
||
|
||
walk_forward函数中的 left_dist 名称改为 exp_dist
|
||
odo_changeback 更名为 odo_verticalturn
|
||
删去了无用的读锁 self.handle_lock
|
||
|
||
selaction 更名为 selfdef_action
|
||
side_equal 更名为 bothside_align
|
||
|
||
|
||
while ... return ... 改 if 的函数 : odo_verticalturn walk_forward rightside_align
|
||
|
||
删去 turnleft_corner 函数(我当时写了一半没接着写了
|
||
|
||
speedump_and_circle 更名为 speedbump_and_circle (打错了
|
||
|
||
我写的大多数函数前面都加了些简单注释
|
||
'''
|
||
import lcm
|
||
import sys
|
||
import os
|
||
import time
|
||
from threading import Thread, Lock
|
||
|
||
from robot_control_cmd_lcmt import robot_control_cmd_lcmt
|
||
from robot_control_response_lcmt import robot_control_response_lcmt
|
||
from localization_lcmt import localization_lcmt
|
||
|
||
import toml
|
||
import copy
|
||
import math
|
||
from file_send_lcmt import file_send_lcmt
|
||
|
||
import rclpy
|
||
import numpy
|
||
from rclpy.node import Node
|
||
from sensor_msgs.msg import LaserScan
|
||
from rclpy.qos import QoSProfile, qos_profile_sensor_data
|
||
from pprint import pprint
|
||
|
||
# 自定义步态发送数据的结构
|
||
robot_cmd = {
|
||
'mode': 0, 'gait_id': 0, 'contact': 0, 'life_count': 0,
|
||
'vel_des': [0.0, 0.0, 0.0],
|
||
'rpy_des': [0.0, 0.0, 0.0],
|
||
'pos_des': [0.0, 0.0, 0.0],
|
||
'acc_des': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||
'ctrl_point': [0.0, 0.0, 0.0],
|
||
'foot_pose': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||
'step_height': [0.0, 0.0],
|
||
'value': 0, 'duration': 0
|
||
}
|
||
|
||
PI = 3.1416
|
||
# R = 0.5
|
||
# T = 10
|
||
# 雷达数据
|
||
laser_rec = {
|
||
'data': [0] * 180
|
||
}
|
||
|
||
|
||
def main():
|
||
Ctrl = Robot_Ctrl()
|
||
Ctrl.run()
|
||
msg = robot_control_cmd_lcmt()
|
||
|
||
try:
|
||
Ctrl.Recovery_stand(msg)
|
||
time.sleep(0.5)
|
||
Ctrl.selfdef_action(1)
|
||
# Ctrl.circle(msg)
|
||
# 上石子路
|
||
# Ctrl.odo_verticalturn(0, msg=msg)
|
||
# time.sleep(1)
|
||
# Ctrl.walk_forward(msg=msg, exp_dist=0.60)
|
||
# time.sleep(0.2)
|
||
# Ctrl.odo_verticalturn(target=1.5707, msg=msg)
|
||
# msg.mode = 11 # Locomotion
|
||
# msg.gait_id = 10 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
# msg.vel_des = [0.5, 0, 0] # forward left/rightmove rotate
|
||
# msg.duration = 3600 # Zero duration means continuous motion until a new command is used.
|
||
# # Continuous motion can interrupt non-zero duration interpolation motion
|
||
# msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
# msg.life_count += 1
|
||
# msg.rpy_des = [0, 0.0, 0]
|
||
# Ctrl.Send_cmd(msg)
|
||
# Ctrl.Wait_finish(11, 10)
|
||
# Ctrl.odo_verticalturn(target=1.5708, msg=msg)
|
||
# time.sleep(0.1)
|
||
# Ctrl.stone(msg)
|
||
# Ctrl.Recovery_stand(msg)
|
||
# time.sleep(3)
|
||
# Ctrl.odo_verticalturn(target=1.5708, msg=msg)
|
||
# time.sleep(3)
|
||
# Ctrl.walk_forward(msg, exp_dist=0.4)
|
||
# time.sleep(3)
|
||
# Ctrl.rightside_align(msg=msg, expect_dist=1.15)
|
||
# time.sleep(4)
|
||
# Ctrl.odo_verticalturn(target=3.1415, msg=msg)
|
||
# time.sleep(1)
|
||
# Ctrl.speedbump_and_circle(msg)
|
||
# Ctrl.jump(msg, 1200, 1)
|
||
# Ctrl.odo_verticalturn(target=3.1415, msg=msg)
|
||
# Ctrl.bothside_align(msg)
|
||
# while True:
|
||
# Ctrl.Recovery_stand(msg)
|
||
# Ctrl.jump(msg,1200,1)
|
||
# time.sleep(0.1)
|
||
|
||
|
||
except KeyboardInterrupt:
|
||
pass
|
||
Ctrl.quit()
|
||
sys.exit()
|
||
|
||
|
||
# 激光雷达订阅
|
||
class LaserScanSubscriber(Node):
|
||
|
||
def __init__(self):
|
||
super().__init__('laser_scan_subscriber')
|
||
# 使用SensorDataQoS作为QoS配置文件
|
||
qos_profile = qos_profile_sensor_data # 这就是SensorDataQoS
|
||
self.subscription = self.create_subscription(
|
||
LaserScan,
|
||
'scan', # 替换为你的激光雷达数据发布的话题名
|
||
self.listener_callback,
|
||
qos_profile)
|
||
|
||
def listener_callback(self, msg):
|
||
global laser_rec
|
||
laser_rec['data'] = msg.ranges.tolist()
|
||
time.sleep(3)
|
||
|
||
|
||
class Robot_Ctrl(object):
|
||
def __init__(self):
|
||
# 反馈线程初始化
|
||
self.rec_thread = Thread(target=self.rec_responce)
|
||
self.send_thread = Thread(target=self.send_publish)
|
||
self.odo_thread = Thread(target=self.rec_responce_o)
|
||
self.lc_r = lcm.LCM("udpm://239.255.76.67:7670?ttl=255")
|
||
self.lc_s = lcm.LCM("udpm://239.255.76.67:7671?ttl=255")
|
||
|
||
self.cmd_msg = robot_control_cmd_lcmt()
|
||
self.rec_msg = robot_control_response_lcmt()
|
||
self.odo_msg = localization_lcmt()
|
||
self.send_lock = Lock()
|
||
|
||
self.delay_cnt = 0
|
||
self.mode_ok = 0
|
||
self.gait_ok = 0
|
||
self.runing = 1
|
||
|
||
self.lc_o = lcm.LCM("udpm://239.255.76.67:7667?ttl=255") ###里程计
|
||
|
||
self.lcm_cmd = lcm.LCM("udpm://239.255.76.67:7671?ttl=255")
|
||
self.lcm_usergait = lcm.LCM("udpm://239.255.76.67:7671?ttl=255")
|
||
self.usergait_msg = file_send_lcmt()
|
||
|
||
rclpy.init(args=None)
|
||
self.laser_scan_subscriber = LaserScanSubscriber()
|
||
self.laser_thread = Thread(target=self.laser_spin_func, kwargs={'subscriber': self.laser_scan_subscriber})
|
||
|
||
def laser_spin_func(self, subscriber):
|
||
rclpy.spin(subscriber)
|
||
time.sleep(0.02)
|
||
|
||
def run(self):
|
||
self.lc_r.subscribe("robot_control_response", self.msg_handler)
|
||
self.lc_o.subscribe("global_to_robot", self.msg_handler_o) ###里程计订阅话题
|
||
self.send_thread.start()
|
||
self.rec_thread.start()
|
||
self.odo_thread.start() ###启动里程计
|
||
print("odo 启动---")
|
||
self.laser_thread.start()
|
||
|
||
def msg_handler(self, channel, data):
|
||
self.rec_msg = robot_control_response_lcmt().decode(data)
|
||
if (self.rec_msg.order_process_bar >= 95):
|
||
self.mode_ok = self.rec_msg.mode
|
||
else:
|
||
self.mode_ok = 0
|
||
|
||
def msg_handler_o(self, channel, data): ###里程计解码函数,被按照频率调用
|
||
self.odo_msg = localization_lcmt().decode(data)
|
||
print(self.odo_msg.timestamp, self.odo_msg.xyz, self.odo_msg.vxyz, self.odo_msg.rpy, self.odo_msg.vBody)
|
||
|
||
def rec_responce(self):
|
||
while self.runing:
|
||
self.lc_r.handle()
|
||
time.sleep(0.002)
|
||
|
||
def rec_responce_o(self): ###里程计
|
||
while self.runing:
|
||
self.lc_o.handle()
|
||
time.sleep(0.002)
|
||
|
||
def selfdef_action(self, mode): # 自定义步态选择参数
|
||
try:
|
||
self.send_lock.acquire()
|
||
if mode == 0: # 石子路+上下坡
|
||
steps = toml.load("./Gait_Params_walk.toml")
|
||
elif mode == 1: # 待定
|
||
steps = toml.load(
|
||
"./Gait_Params_scopewalk.toml")
|
||
full_steps = {'step': [robot_cmd]}
|
||
k = 0
|
||
for i in steps['step']:
|
||
cmd = copy.deepcopy(robot_cmd)
|
||
cmd['duration'] = i['duration']
|
||
if i['type'] == 'usergait':
|
||
cmd['mode'] = 11 # LOCOMOTION
|
||
cmd['gait_id'] = 110 # USERGAIT
|
||
cmd['vel_des'] = i['body_vel_des']
|
||
cmd['rpy_des'] = i['body_pos_des'][0:3]
|
||
cmd['pos_des'] = i['body_pos_des'][3:6]
|
||
cmd['foot_pose'][0:2] = i['landing_pos_des'][0:2]
|
||
cmd['foot_pose'][2:4] = i['landing_pos_des'][3:5]
|
||
cmd['foot_pose'][4:6] = i['landing_pos_des'][6:8]
|
||
cmd['ctrl_point'][0:2] = i['landing_pos_des'][9:11]
|
||
cmd['step_height'][0] = math.ceil(i['step_height'][0] * 1e3) + math.ceil(
|
||
i['step_height'][1] * 1e3) * 1e3
|
||
cmd['step_height'][1] = math.ceil(i['step_height'][2] * 1e3) + math.ceil(
|
||
i['step_height'][3] * 1e3) * 1e3
|
||
cmd['acc_des'] = i['weight']
|
||
cmd['value'] = i['use_mpc_traj']
|
||
cmd['contact'] = math.floor(i['landing_gain'] * 1e1)
|
||
cmd['ctrl_point'][2] = i['mu']
|
||
if k == 0:
|
||
full_steps['step'] = [cmd]
|
||
else:
|
||
full_steps['step'].append(cmd)
|
||
k = k + 1
|
||
if mode == 0: # 石子路+上下坡
|
||
f = open("./Gait_Params_walk_full.toml",
|
||
'w')
|
||
elif mode == 1: # 待定
|
||
f = open("./Gait_Params_scopewalk_full.toml",
|
||
'w')
|
||
f.write("# Gait Params\n")
|
||
f.writelines(toml.dumps(full_steps))
|
||
f.close()
|
||
|
||
if mode == 0: # 石子路+上下坡
|
||
file_obj_gait_def = open(
|
||
"./Gait_Def_walk.toml", 'r')
|
||
file_obj_gait_params = open(
|
||
"./Gait_Params_walk_full.toml", 'r')
|
||
elif mode == 1: # 待定
|
||
file_obj_gait_def = open(
|
||
"./Gait_Def_scopewalk.toml", 'r')
|
||
file_obj_gait_params = open(
|
||
"./Gait_Params_scopewalk_full.toml", 'r')
|
||
self.usergait_msg.data = file_obj_gait_def.read()
|
||
|
||
self.lcm_usergait.publish("user_gait_file", self.usergait_msg.encode())
|
||
|
||
time.sleep(0.5)
|
||
self.usergait_msg.data = file_obj_gait_params.read()
|
||
self.lcm_usergait.publish("user_gait_file", self.usergait_msg.encode())
|
||
time.sleep(0.1)
|
||
file_obj_gait_def.close()
|
||
file_obj_gait_params.close()
|
||
if mode == 0: # 石子路+上下坡
|
||
user_gait_list = open(
|
||
"./Usergait_List.toml", 'r')
|
||
if mode == 1: # 石子路+上下坡
|
||
user_gait_list = open(
|
||
"./Usergait_List.toml", 'r')
|
||
steps = toml.load(user_gait_list)
|
||
for step in steps['step']:
|
||
self.cmd_msg.mode = step['mode']
|
||
self.cmd_msg.value = step['value']
|
||
self.cmd_msg.contact = step['contact']
|
||
self.cmd_msg.gait_id = step['gait_id']
|
||
self.cmd_msg.duration = step['duration']
|
||
self.cmd_msg.life_count += 1
|
||
for i in range(3):
|
||
self.cmd_msg.vel_des[i] = step['vel_des'][i]
|
||
self.cmd_msg.rpy_des[i] = step['rpy_des'][i]
|
||
self.cmd_msg.pos_des[i] = step['pos_des'][i]
|
||
self.cmd_msg.acc_des[i] = step['acc_des'][i]
|
||
self.cmd_msg.acc_des[i + 3] = step['acc_des'][i + 3]
|
||
self.cmd_msg.foot_pose[i] = step['foot_pose'][i]
|
||
self.cmd_msg.ctrl_point[i] = step['ctrl_point'][i]
|
||
for i in range(2):
|
||
self.cmd_msg.step_height[i] = step['step_height'][i]
|
||
self.lcm_cmd.publish("robot_control_cmd", self.cmd_msg.encode())
|
||
time.sleep(0.1)
|
||
if mode == 0: # 石子路+上下坡
|
||
for i in range(
|
||
550): # 10s Heat beat It is used to maintain the heartbeat when life count is not updated
|
||
self.lcm_cmd.publish("robot_control_cmd", self.cmd_msg.encode())
|
||
# self.err_handler(msg = robot_control_cmd_lcmt())
|
||
time.sleep(0.2)
|
||
if mode == 1: # 台阶
|
||
for i in range(275): # 10s Heat beat It is used to maintain the heartbeat when life count is not updated
|
||
self.lcm_cmd.publish("robot_control_cmd", self.cmd_msg.encode())
|
||
# self.err_handler(msg = robot_control_cmd_lcmt())
|
||
time.sleep(0.2)
|
||
self.send_lock.release()
|
||
except KeyboardInterrupt:
|
||
self.cmd_msg.mode = 7 # PureDamper before KeyboardInterrupt:
|
||
self.cmd_msg.gait_id = 0
|
||
self.cmd_msg.duration = 0
|
||
self.cmd_msg.life_count += 1
|
||
self.lcm_cmd.publish("robot_control_cmd", self.cmd_msg.encode())
|
||
self.send_lock.release()
|
||
pass
|
||
|
||
def Wait_finish(self, mode, gait_id, timeout=2000): # timeout // 0.005 = 多少秒超时
|
||
count = 0
|
||
while self.runing and count < timeout: # 10s
|
||
if self.mode_ok == mode and self.gait_ok == gait_id:
|
||
return True
|
||
else:
|
||
time.sleep(0.005)
|
||
count += 1
|
||
|
||
def send_publish(self):
|
||
while self.runing:
|
||
self.send_lock.acquire()
|
||
if self.delay_cnt > 20: # Heartbeat signal 10HZ, It is used to maintain the heartbeat when life count is not updated
|
||
self.lc_s.publish("robot_control_cmd", self.cmd_msg.encode())
|
||
self.delay_cnt = 0
|
||
self.delay_cnt += 1
|
||
self.send_lock.release()
|
||
time.sleep(0.005)
|
||
|
||
def Send_cmd(self, msg):
|
||
self.send_lock.acquire()
|
||
self.delay_cnt = 50
|
||
self.cmd_msg = msg
|
||
self.send_lock.release()
|
||
|
||
def quit(self):
|
||
self.runing = 0
|
||
self.rec_thread.join()
|
||
self.send_thread.join()
|
||
self.odo_thread.join()
|
||
self.laser_thread.join()
|
||
|
||
def jump(self, msg, duration, type): # 跳跃
|
||
msg.mode = 16 # Locomotion
|
||
msg.gait_id = type # 0左跳 1前跳 3右跳 6原地跳
|
||
msg.duration = duration # Zero duration means continuous motion until a new command is used.
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(16, 1)
|
||
time.sleep(0.1)
|
||
|
||
def Recovery_stand(self, msg):#恢复站立
|
||
msg.mode = 12 # Recovery stand
|
||
msg.gait_id = 0
|
||
msg.life_count += 1 # Command will take effect when life_count update
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(12, 0)
|
||
|
||
def Pure_Damp(self, msg, mode):
|
||
msg.mode = 7 # PureDamp
|
||
msg.gait_id = mode # 0为自然倒下,1为受控倒下
|
||
msg.life_count += 1 # Command will take effect when life_count update
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(12, 0)
|
||
|
||
def circle(self, msg, R=0.6, T=12): # 半径,时间
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 10 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [PI * R * 2 / T, 0, 2 * PI / T] # forward left/rightmove rotate
|
||
msg.duration = T * 550 # Zero duration means continuous motion until a new command is used.
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
msg.rpy_des = [0, 0.0, 0]
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(11, 10)
|
||
|
||
def stone(self, msg):
|
||
self.Recovery_stand(msg)
|
||
self.selfdef_action(0)
|
||
time.sleep(0.1)
|
||
|
||
# def locomotion(s)
|
||
def slope(self, msg):
|
||
self.Recovery_stand(msg)
|
||
self.selfdef_action(1)
|
||
|
||
def err_handler(self, msg):
|
||
if self.rec_msg.switch_status == 3: # 如果状态为高阻尼保护模式
|
||
msg.mode = 12 # Recovery stand
|
||
msg.gait_id = 0
|
||
msg.life_count += 1 # Command will take effect when life_count update
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(12, 0)
|
||
|
||
# 雷达以及里程计
|
||
# 探测直线的时候需要的二分查找
|
||
def bio_select(self, k, b, start, end, dist_limit, data_with_order_x, data_with_order_y):
|
||
left, right = start, end - 1
|
||
|
||
# 二分查找
|
||
while left < right:
|
||
mid = (left + right) // 2
|
||
x_mid, y_mid = data_with_order_x[mid], data_with_order_y[mid]
|
||
|
||
# 计算点到直线的距离
|
||
distance = abs(k * x_mid - y_mid + b) / (k ** 2 + 1) ** 0.5
|
||
if distance <= dist_limit:
|
||
# 点在直线附近,继续向右搜索
|
||
left = mid + 1
|
||
else:
|
||
# 点不在直线附近,缩小搜索范围
|
||
right = mid
|
||
# 返回直线附近点的范围
|
||
return left
|
||
|
||
def detect_lines(self): # data 180个的数组
|
||
try:
|
||
dist_limit = 0.12
|
||
backward_limit = 0.04
|
||
init_points = 5
|
||
data_with_order_x = []
|
||
data_with_order_y = []
|
||
data = laser_rec['data']
|
||
|
||
# 过滤无效值
|
||
for i in range(180):
|
||
if data[i] < 0.12 or data[i] > 12:
|
||
continue
|
||
# data_with_order.append([math.radians(i-90) - degree,data[i]]) #新坐标系里面的偏转角(弧度)+ 距离
|
||
data_with_order_x.append(data[i] * math.cos(math.radians(i - 90)))
|
||
data_with_order_y.append(data[i] * math.sin(math.radians(i - 90))) # x y 轴
|
||
len_filtered = len(data_with_order_x)
|
||
|
||
# print(len(data_with_order_x))
|
||
# for i in range(0, len(data_with_order_x)):
|
||
# print('(', end='')
|
||
# print(data_with_order_x[i], data_with_order_y[i], sep=' ,', end='')
|
||
# print('),', end='\n')
|
||
# 储存直线方程
|
||
lines = []
|
||
# 拐动位置
|
||
corners = [0]
|
||
while corners[-1] < len_filtered - init_points - 1:
|
||
start = corners[-1]
|
||
k1_init, b_init = numpy.polyfit(data_with_order_x[start:start + init_points],
|
||
data_with_order_y[start:start + init_points], 1)
|
||
|
||
# print(k1_init, b_init)
|
||
# 二分查找 end 是范围内最后一个点
|
||
end = self.bio_select(k1_init, b_init, start, len_filtered, dist_limit, data_with_order_x,
|
||
data_with_order_y)
|
||
|
||
# 初次允许偏差稍大,可以防止有需要的点没能落在直线上,即升温
|
||
k1_fixed, b1_fixed = numpy.polyfit(data_with_order_x[start:end], data_with_order_y[start:end], 1)
|
||
dist_bias = (abs(k1_fixed * data_with_order_x[end] - data_with_order_y[end] + b1_fixed) /
|
||
(k1_fixed ** 2 + 1) ** 0.5)
|
||
|
||
end_new = end
|
||
# ###进行退火,降低限制的范围,找到更加精确的点
|
||
while dist_bias >= backward_limit:
|
||
end_new -= 1
|
||
dist_bias = (abs(k1_fixed * data_with_order_x[end_new] - data_with_order_y[end_new] + b1_fixed) /
|
||
(k1_fixed ** 2 + 1) ** 0.5)
|
||
|
||
# 重新拟合直线
|
||
k1_fixed, b1_fixed = numpy.polyfit(data_with_order_x[start:end_new], data_with_order_y[start:end_new], 1)
|
||
corners.append(end_new)
|
||
# print(end)
|
||
lines.append([k1_fixed, b1_fixed])
|
||
if len(lines) >= 3:
|
||
print(corners)
|
||
break
|
||
|
||
# for i in lines:
|
||
# # print(f'{i[0]}x - y + {i[1]} = 0')
|
||
# print(f'[{i[0]}, {i[1]}],')
|
||
return lines
|
||
###try后面是原来的代码
|
||
except:
|
||
time.sleep(0.04)
|
||
return self.detect_lines()
|
||
####对于直角而言,修改后的里程计转动函数更加精确,一次性可以转到对应位置
|
||
def odo_verticalturn(self, target, msg, limit=0.04, timesleep_s=5): ##允许误差0.04弧度,大概是2.29度
|
||
const_int = 2470 # 转 1.57 弧度 大概要 3875 duration 每弧度大概这个值 持续时间大概6.5秒
|
||
dist = target - self.odo_msg.rpy[2]
|
||
print('odo_verticalturn', self.odo_msg.rpy[2], target)
|
||
if abs(dist) > limit:
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [0, 0, 0.5 if dist > 0 else -0.5] # 转向
|
||
msg.duration = int(const_int * abs(dist))
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
time.sleep(7 * abs(dist) / 1.57)
|
||
# print('1 times finish angle',self.odo_msg.rpy[2])
|
||
# return
|
||
dist = target - self.odo_msg.rpy[2]
|
||
print('odo_verticalturn', self.odo_msg.rpy[2], target)
|
||
|
||
#####左右两侧的直线都可以扫描到时,可以使用这个函数来在路中对齐
|
||
#####offset以左为正向,偏离中线的距离
|
||
def bothside_align(self, msg, limit=0.08, off_set=0.0, timeout=600): ## 允许最大误差0.08米,即离最中线左右偏向4厘米
|
||
###先里程计回正再算距离
|
||
const_int = 6666 # 对 差的距离 进行倍数放大 控制左右移动时间
|
||
lines = self.detect_lines()
|
||
while len(lines) < 3:
|
||
time.sleep(0.04)
|
||
lines = self.detect_lines()
|
||
dist1 = round(abs(lines[0][1] / ((lines[0][0] * lines[0][0] + 1)) ** 0.5), 3)
|
||
dist2 = round(abs(lines[2][1] / ((lines[2][0] * lines[2][0] + 1)) ** 0.5), 3)
|
||
# print(f'before move to equal: r :{dist1} l: {dist2}')
|
||
dist_diff = dist1 - dist2 - 2 * off_set
|
||
while abs(dist_diff) > limit:
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 27
|
||
msg.vel_des = [0, -0.15, 0] if dist_diff > 0 else [0, 0.15, 0]
|
||
msg.duration = int(const_int * abs(dist_diff) / 2)
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
msg.rpy_des = [0, 0.3, 0]
|
||
self.Send_cmd(msg)
|
||
time.sleep(msg.duration / 1000 + 0.5)
|
||
time.sleep(3)
|
||
lines = self.detect_lines()
|
||
while len(lines) < 3:
|
||
time.sleep(0.04)
|
||
lines = self.detect_lines()
|
||
dist1 = round(abs(lines[0][1] / ((lines[0][0] * lines[0][0] + 1)) ** 0.5), 3)
|
||
dist2 = round(abs(lines[2][1] / ((lines[2][0] * lines[2][0] + 1)) ** 0.5), 3)
|
||
dist_diff = dist1 - dist2
|
||
|
||
####前向运动函数需要在里程计回正之后才能使用
|
||
def walk_forward(self, msg, exp_dist, limit=0.04, timeout=1200, k_bound=5): ##在对正之后才能调用,exp_dist指定前面预留多长的距离
|
||
const_int = 1667 # 对 差的距离 进行倍数放大 控制前进时间
|
||
lines = self.detect_lines()
|
||
dist = round(abs(lines[1][1] / ((lines[1][0] * lines[1][0] + 1)) ** 0.5), 3)
|
||
print(dist)
|
||
# for i in lines:
|
||
# print(i)
|
||
while (len(lines) <= 1 or (lines[1][0] < k_bound and lines[1][0] > -k_bound)):
|
||
time.sleep(0.04)
|
||
lines = self.detect_lines()
|
||
dist = round(abs(lines[1][1] / ((lines[1][0] * lines[1][0] + 1)) ** 0.5), 3)
|
||
|
||
dist_need_walk = dist - exp_dist
|
||
if abs(dist_need_walk) > limit:
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 27
|
||
msg.vel_des = [0.6 if dist_need_walk > 0 else -0.6, 0, 0]
|
||
msg.duration = int(const_int * abs(dist_need_walk))
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(11, 27, timeout=timeout)
|
||
|
||
lines = self.detect_lines()
|
||
dist = round(abs(lines[1][1] / ((lines[1][0] * lines[1][0] + 1)) ** 0.5), 3)
|
||
# while (len(lines) <= 1 or (lines[1][0] <k_bound and lines[1][0]>-k_bound)):
|
||
# time.sleep(0.04)
|
||
# lines = self.detect_lines()
|
||
# dist = round(abs(lines[1][1] / ((lines[1][0] * lines[1][0] + 1)) ** 0.5),3)
|
||
# dist_need_walk = dist - exp_dist
|
||
print('walk_forward dis_after', dist)
|
||
|
||
|
||
####对部分地形,只使用扫描到的右侧直线即对正赛道,expect_dist为指定离右边直线的距离
|
||
def rightside_align(self, msg, expect_dist=0.65, limit=0.04, timeout=800):
|
||
const_int = 5000
|
||
lines = self.detect_lines()
|
||
dist = round(abs(lines[0][1] / ((lines[0][0] * lines[0][0] + 1)) ** 0.5), 3)
|
||
dist_need_walk = dist - expect_dist
|
||
if abs(dist_need_walk) > limit:
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 27
|
||
msg.vel_des = [0, -0.2 if dist_need_walk > 0 else 0.2, 0]
|
||
msg.duration = int(const_int * abs(dist_need_walk))
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
self.Wait_finish(11, 27, timeout=timeout)
|
||
|
||
lines = self.detect_lines()
|
||
dist = round(abs(lines[0][1] / ((lines[0][0] * lines[0][0] + 1)) ** 0.5), 3)
|
||
|
||
# dist_need_walk = dist - expect_dist
|
||
|
||
# print('right align dis_after', dist)
|
||
|
||
###此函数用于小角度的纠正,精确程度更加高
|
||
###timesleep_s单位是秒,指定一次回正之后需要间隔多久,建议在verticval_turn之后使用,更加精确
|
||
def odo_tinyturn(self, target, msg, limit=0.04, timesleep_s=5):
|
||
const_int = 1200
|
||
dist = target - self.odo_msg.rpy[2]
|
||
print('odo_tinyturn', self.odo_msg.rpy[2], target)
|
||
while abs(dist) > limit:
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [0, 0, 0.5 if dist > 0 else -0.5] # 转向
|
||
msg.duration = int(const_int * abs(dist))
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
time.sleep(timesleep_s)
|
||
# print('1 times finish angle',self.odo_msg.rpy[2])
|
||
# return
|
||
dist = target - self.odo_msg.rpy[2]
|
||
print('odo_tinyturn', self.odo_msg.rpy[2], target)
|
||
|
||
###在第二个拐角对齐之后,可以调用这个函数。直接通过减速带和圆柱
|
||
def speedbump_and_circle(self, msg):
|
||
const_int1 = 5000 #######在走向圆柱的情况下,使用的duration常数
|
||
const_int2 = 5000 #######在侧向靠近圆柱,进入赛道位置的情况下,使用的duration常数
|
||
y_sharp_dist = -0.08 #######给最后的对齐使用的参数 绝对值是对正之后拐点和狗y轴的差距 正常要负数
|
||
x_sharp_dist = 0.30 #######给最后的对齐使用的参数 是对正之后拐点和狗x轴的差距
|
||
|
||
#####开环走过大部分减速带
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [0.2, 0, 0] # 直走
|
||
msg.rpy_des = [0, 0, 0]
|
||
# Zero duration means continuous motion until a new command is used.
|
||
msg.duration = 14000
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
|
||
time.sleep(24)
|
||
|
||
###找到方向处理剩余的不确定距离,主要是向半径方向靠近圆柱
|
||
time.sleep(0.04)
|
||
laser_keep = laser_rec['data']
|
||
idx_min = laser_keep[70:110].index(min(laser_keep[70:110])) + 70 # 最小值点
|
||
dist_min = laser_keep[idx_min]
|
||
angel_diff = idx_min / 90 * 1.57
|
||
|
||
# print(idx_min, dist_min, angel_diff)
|
||
|
||
if dist_min > 0.15:
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [0.1 * math.sin(angel_diff), 0.1 * math.cos(angel_diff), 0] # 直走
|
||
msg.rpy_des = [0, 0, 0]
|
||
# Zero duration means continuous motion until a new command is used.
|
||
msg.duration = int((dist_min - 0.15) * const_int1)
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
# print('tiny walk')
|
||
|
||
####转向正右边,回正
|
||
time.sleep(0.5)
|
||
self.odo_verticalturn(1.5708, msg=msg)
|
||
self.odo_tinyturn(target=1.5708, msg=msg)
|
||
|
||
time.sleep(3)
|
||
###########################找右边直线和圆环赛道的交界点,以这个点为基准去进行对齐
|
||
###########################多次扫描去除错误点
|
||
laser_valid = [0] * 180
|
||
for i in range(10):
|
||
time.sleep(0.04)
|
||
laser = laser_rec['data']
|
||
for j in range(0, 180):
|
||
if laser_valid[j] == 0 and laser[j] > 0.15:
|
||
laser_valid[j] = laser[j]
|
||
##########################根据X轴的值去找到拐角点,序号idx
|
||
data_with_order_x = []
|
||
data_with_order_y = []
|
||
|
||
for i in range(180):
|
||
if laser_valid[i] < 0.12 or laser_valid[i] > 12:
|
||
continue
|
||
# data_with_order.append([math.radians(i-90) - degree,data[i]]) #新坐标系里面的偏转角(弧度)+ 距离
|
||
data_with_order_x.append(laser_valid[i] * math.cos(math.radians(i - 90)))
|
||
data_with_order_y.append(laser_valid[i] * math.sin(math.radians(i - 90))) # x y 轴
|
||
len_filtered = len(data_with_order_x)
|
||
|
||
# print('len_filtered',len_filtered)
|
||
# print(data_with_order_x)
|
||
|
||
idx = -1
|
||
i = 60
|
||
while i < len_filtered - 10:
|
||
cnt = 0
|
||
for k in range(i + 1, i + 9):
|
||
if data_with_order_x[k] > data_with_order_x[k - 1]:
|
||
cnt += 1
|
||
else:
|
||
break
|
||
if cnt > 6:
|
||
idx = i
|
||
break
|
||
i += 1
|
||
|
||
###################读出拐角点的值
|
||
point_sharp_x = data_with_order_x[idx]
|
||
point_sharp_y = data_with_order_y[idx]
|
||
|
||
# print('idx pt_sharp_x', idx, point_sharp_x)
|
||
# print('idx pt_sharp_y', idx, point_sharp_y)
|
||
|
||
time.sleep(1)
|
||
|
||
#####根据拐角点矫正方位,先在y轴上矫正
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [0, 0.2 if (point_sharp_y - y_sharp_dist) > 0 else -0.2, 0]
|
||
msg.rpy_des = [0, 0, 0]
|
||
# Zero duration means continuous motion until a new command is used.
|
||
msg.duration = int(const_int2 * abs(y_sharp_dist - point_sharp_y))
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
time.sleep(5)
|
||
|
||
####再矫正x轴
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [-0.2 if (point_sharp_x - x_sharp_dist) < 0 else 0.2, 0, 0]
|
||
msg.rpy_des = [0, 0, 0]
|
||
# Zero duration means continuous motion until a new command is used.
|
||
msg.duration = int(const_int2 * abs(point_sharp_x - x_sharp_dist))
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
time.sleep(5)
|
||
|
||
#####绕圈出去
|
||
msg.mode = 11 # Locomotion
|
||
msg.gait_id = 26 # TROT_FAST:10 TROT_MEDIUM:3 TROT_SLOW:27 自变频:26
|
||
msg.vel_des = [0.165, 0, 0.3] # 转向
|
||
msg.duration = 12000
|
||
# Continuous motion can interrupt non-zero duration interpolation motion
|
||
msg.step_height = [0.06, 0.06] # ground clearness of swing leg
|
||
msg.life_count += 1
|
||
self.Send_cmd(msg)
|
||
|
||
time.sleep(20)
|
||
|
||
|
||
# Main function
|
||
if __name__ == '__main__':
|
||
main()
|