import time import sys import os import cv2 import numpy as np import math # 添加父目录到路径,以便能够导入utils sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from base_move.turn_degree import turn_degree, turn_degree_v2 from base_move.go_straight import go_straight, go_lateral from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing from utils.gray_sky_analyzer import analyze_gray_sky_ratio from utils.detect_track import detect_horizontal_track_edge from utils.detect_dual_track_lines import detect_dual_track_lines from base_move.move_base_hori_line import calculate_distance_to_line from task_4.pass_bar import pass_bar from base_move.center_on_dual_tracks import center_on_dual_tracks from task_3.task_3 import pass_stone # 创建本模块特定的日志记录器 logger = get_logger("任务4") observe = True STONE_DISTANCE = 4.0 # TODO 距离参数需要微调 RED_RATIO_THRESHOLD = 0.35 # TODO 红色区域比例阈值需要微调 def run_task_4(ctrl, msg): section('任务4-1:直线移动', "移动") pass_stone(ctrl, msg, distance=STONE_DISTANCE) section('任务4-2:移动直到红色区域比例大于阈值', "红色检测") go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2) section('任务4-3:通过栏杆', "移动") pass_bar(ctrl, msg) def run_task_4_back(ctrl, msg): """ 参数: ctrl: Robot_Ctrl对象 msg: 控制消息对象 image_processor: 可选的图像处理器实例 """ turn_degree_v2(ctrl, msg, degree=-90, absolute=True) center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False) go_straight(ctrl, msg, distance=2, speed=1, observe=True) center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False) # TODO 向右移动0.5秒 (或许不需要了) # section('任务4-回程:向右移动', "移动") # go_lateral(ctrl, msg, distance=-0.1, speed=0.15, observe=True) # DEBUG turn_degree_v2(ctrl, msg, degree=-90, absolute=True) section('任务4-1:移动直到灰色天空比例低于阈值', "天空检测") go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2) section('任务4-2:通过栏杆', "移动") turn_degree_v2(ctrl, msg, degree=-90, absolute=True) pass_bar(ctrl, msg) turn_degree_v2(ctrl, msg, degree=-90, absolute=True) section('任务4-3:stone', "移动") go_straight(ctrl, msg, distance=1, speed=2) turn_degree_v2(ctrl, msg, degree=-90, absolute=True) # Use enhanced calibration for better Y-axis correction on stone path # go_straight(ctrl, msg, distance=4.5, speed=0.35, mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True) pass_stone(ctrl, msg, distance=STONE_DISTANCE) # go_straight_with_enhanced_calibration(ctrl, msg, distance=4.5, speed=0.35, # mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True) section('任务4-3:前进直到遇到黄线 - 石板路', "移动") # 使用新创建的函数,直走直到遇到黄线并停在距离黄线0.5米处 # 获取相机高度 camera_height = 0.355 # 单位: 米 # INFO from TF-tree edge_point, edge_info = detect_horizontal_track_edge(ctrl.image_processor.get_current_image(), observe=True, save_log=True) current_distance = calculate_distance_to_line(edge_info, camera_height, observe=True) go_straight(ctrl, msg, distance=current_distance, speed=0.20, mode=11, gait_id=3, step_height=[0.21, 0.21]) def go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=0.2, step_distance=0.5, max_distance=5, speed=0.3 ): """ 控制机器人沿直线行走,直到红色区域比例高于指定阈值 参数: ctrl: Robot_Ctrl对象 msg: 控制命令消息对象 red_ratio_threshold: 红色区域比例阈值,当检测到的比例高于此值时停止 step_distance: 每次移动的步长(米) max_distance: 最大移动距离(米),防止无限前进 speed: 移动速度(米/秒) 返回: bool: 是否成功找到红色区域比例高于阈值的位置 """ def analyze_red_area_ratio(image): """ 分析图像中红色区域的占比 输入: BGR图像 返回: 红色区域占比 (0~1) """ # 转换到HSV空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 红色有两个区间 lower_red1 = np.array([0, 70, 50]) upper_red1 = np.array([10, 255, 255]) lower_red2 = np.array([160, 70, 50]) upper_red2 = np.array([180, 255, 255]) mask1 = cv2.inRange(hsv, lower_red1, upper_red1) mask2 = cv2.inRange(hsv, lower_red2, upper_red2) mask = cv2.bitwise_or(mask1, mask2) red_pixels = np.count_nonzero(mask) total_pixels = mask.shape[0] * mask.shape[1] ratio = red_pixels / total_pixels if total_pixels > 0 else 0 return ratio total_distance = 0 success_flag = False # 设置移动命令 msg.mode = 11 # Locomotion模式 msg.gait_id = 26 # 自变频步态 msg.step_height = [0.06, 0.06] # 抬腿高度 while total_distance < max_distance: # 获取当前图像 current_image = ctrl.image_processor.get_current_image('ai') if current_image is None: warning("无法获取图像,等待...", "图像") time.sleep(0.5) continue # 分析红色区域比例 try: red_ratio = analyze_red_area_ratio(current_image) info(f"当前红色区域比例: {red_ratio:.2%}", "分析") # 如果红色区域比例高于阈值,停止移动 if red_ratio > red_ratio_threshold: success(f"检测到红色区域比例({red_ratio:.2%})高于阈值({red_ratio_threshold:.2%}),停止移动", "完成") success_flag = True break except Exception as e: error(f"分析图像时出错: {e}", "错误") # 继续前进一段距离 info(f"继续前进 {step_distance} 米...", "移动") # 设置移动速度和方向 msg.vel_des = [speed, 0, 0] # [前进速度, 侧向速度, 角速度] msg.duration = 0 # wait next cmd msg.life_count += 1 # 发送命令 ctrl.Send_cmd(msg) # 估算前进时间 move_time = step_distance / speed time.sleep(move_time) # 累计移动距离 total_distance += step_distance info(f"已移动总距离: {total_distance:.2f} 米", "距离") # 平滑停止 if hasattr(ctrl.base_msg, 'stop_smooth'): ctrl.base_msg.stop_smooth() else: ctrl.base_msg.stop() if not success_flag and total_distance >= max_distance: warning(f"已达到最大移动距离 {max_distance} 米,但未找到红色区域比例高于 {red_ratio_threshold:.2%} 的位置", "超时") return success_flag