Update 821

This commit is contained in:
hav 2025-08-21 11:25:38 +08:00
parent ddae35c69a
commit e85d8dfbaa
46 changed files with 608 additions and 118 deletions

0
.vscode/settings.json vendored Normal file → Executable file
View File

44
main.py
View File

@ -24,7 +24,7 @@ from utils.base_msg import BaseMsg
from utils.speech_demo import speak
# from utils.marker_client import MarkerRunner
from task_1.task_1 import run_task_1, run_task_1_back
from task_1.task_1 import run_task_1 # , run_task_1_back
from task_2.task_2 import run_task_2, run_task_2_back, run_task_2_demo
from task_2_5.task_2_5 import run_task_2_5, run_task_2_5_back
from task_3.task_3 import run_task_3, run_task_3_back
@ -33,7 +33,7 @@ from task_5.task_5 import run_task_5
from base_move.turn_degree import turn_degree_v2
from base_move.go_to_xy import go_to_x_v2, go_to_y_v2
from utils.log_helper import info
from utils.speech_demo import speak
pass_marker = True
TIME_SLEEP = 3000 # TODO 比赛时改成 5000
@ -50,7 +50,8 @@ class TaskType(Enum):
MOVE_TO_LINE = auto() # TODO 直走逼近直线测试
CENTER_ON_DUAL_TRACKS = auto() # TODO 双轨道居中测试
TASK = ''
TASK = TaskType.TASK
def main():
rclpy.init() # 新增:在主程序中统一初始化 ROS 2 上下文
Ctrl = Robot_Ctrl()
@ -91,7 +92,7 @@ def main():
pass_bar(Ctrl, msg)
elif TASK == TaskType.YELLOW_LIGHT: # TODO image
from task_3.task_3 import go_until_yellow_area
turn_degree_v2(Ctrl, msg, degree=-90, absolute=True)
# turn_degree_v2(Ctrl, msg, degree=-90, absolute=True)
go_until_yellow_area(Ctrl, msg)
elif TASK == TaskType.RED_BAR:
from task_4.task_4 import go_straight_until_red_bar
@ -101,7 +102,7 @@ def main():
go_straight_with_enhanced_calibration(Ctrl, msg, distance = 5, speed=0.5, observe=False, mode=11, gait_id=3, step_height=[0.21, 0.21])
elif TASK == TaskType.STONE_ROAD:
from task_3.task_3 import pass_stone
pass_stone(Ctrl, msg, distance = 4, observe=False)
pass_stone(Ctrl, msg, distance = 4.5, observe=False)
elif TASK == TaskType.MOVE_TO_LINE:
from base_move.move_base_hori_line import move_to_hori_line
move_to_hori_line(Ctrl, msg, target_distance = 1.1, observe=False)
@ -109,25 +110,28 @@ def main():
from base_move.center_on_dual_tracks import center_on_dual_tracks
center_on_dual_tracks(Ctrl, msg, max_deviation=10.0, observe=False, detect_height=0.3)
else:
pass
return
# if TASK != TaskType.TASK:
# # 如果不是 task 类型,直接返回
# return
if TASK != TaskType.TASK:
# 如果不是 task 类型,直接返回
return
# TAG task - 1
#run_task_1(Ctrl, msg, t
# ime_sleep=TIME_SLEEP)
#TAG task - 1
# run_task_1(Ctrl, msg, time_sleep=TIME_SLEEP)
# TAG task - 2
# arrow_direction='left'
# arrow_direction = run_task_2_demo(Ctrl, msg, xy_flag=False) # TEST
# arrow_direction = run_task_2(Ctrl, msg, xy_flag=False)
# arrow_direction='left'
# print('🏹 arrow_direction: ', arrow_direction)
arrow_direction='left'
# if(arrow_direction=='left'): speak("左侧路线")
# else: speak("右侧路线")
#TAG task - 2.5
# run_task_2_5(Ctrl, msg, direction=arrow_direction)
@ -141,19 +145,19 @@ def main():
# TAG task - 5
# turn_degree_v2(Ctrl, msg, degree=90, absolute=True)
# success, qr=run_task_5(Ctrl, msg, direction=arrow_direction, observe=True, time_sleep=TIME_SLEEP) # B区任务
success, qr=run_task_5(Ctrl, msg, direction=arrow_direction, observe=True, time_sleep=TIME_SLEEP) # B区任务
# print(success)
# print(qr)
# TAG task - 3 / 4 - part II
if arrow_direction == 'left':
run_task_4_back(Ctrl, msg)
else:
run_task_3_back(Ctrl, msg)
# if arrow_direction == 'left':
# run_task_3_back(Ctrl, msg)
# else:
# run_task_4_back(Ctrl, msg)
#TAG task - 2.5 - back
run_task_2_5_back(Ctrl, msg, direction=arrow_direction)
# #TAG task - 2.5 - back
# run_task_2_5_back(Ctrl, msg, direction=arrow_direction)
# TAG task - 2 - back

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

View File

@ -16,7 +16,7 @@ from base_move.turn_degree import turn_degree, turn_degree_twice, turn_degree_v2
from base_move.center_on_dual_tracks import center_on_dual_tracks
from base_move.go_to_xy import go_to_xy
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
from utils.speech_demo import speak
# 创建本模块特定的日志记录器
logger = get_logger("任务1")
@ -60,6 +60,10 @@ def run_task_1(ctrl, msg, time_sleep=5000):
section('任务1-3转弯', "旋转")
direction = False if res.get('qr_result') == 'A-1' else True # TODO 需要检查一下,这个方向是否正确
if direction == False :speak("A 区库位 1")
else:speak("A 区库位 2")
turn_success, res = arc_turn_around_hori_line(
ctrl=ctrl,
msg=msg,
@ -112,91 +116,4 @@ def run_task_1(ctrl, msg, time_sleep=5000):
# add
go_straight(ctrl, msg, distance=0.3, observe=observe)
section('任务1-790度转弯', "旋转")
radius = res['radius'] * 2 + 0.1
info(f"任务1-7: 转弯半径: {radius}", "信息")
turn_success, res = arc_turn_around_hori_line(
ctrl=ctrl,
msg=msg,
radius=radius,
angle_deg=85 if direction else -85,
#
pass_align=True,
observe=observe,
no_end_reset=True,
)
section('任务1-8直线移动', "移动")
move_to_hori_line(ctrl, msg, target_distance=0.3, observe=observe)
section('任务1-990度旋转', "旋转")
turn_degree_v2(ctrl, msg, degree=0, absolute=True, precision=True)
section('任务1-10: y校准准备 task-2', "移动")
# TODO
success("任务1完成", "完成")
def run_task_1_back(ctrl, msg, time_sleep=5000):
section('任务1-11: 返回', "移动")
go_straight(ctrl, msg, distance=0.2, observe=observe)
turn_degree_v2(ctrl, msg, -90, absolute=True) # 不确定 odo 效果如何;
section('任务1-11: 直线移动', "移动")
move_to_hori_line(ctrl, msg, target_distance=0.2, observe=observe)
section('任务1-12: 180度旋转', "旋转")
turn_success, res = arc_turn_around_hori_line(
ctrl=ctrl,
msg=msg,
angle_deg=170 if direction else -170,
target_distance=0.6,
min_radius=0.3,
max_radius=0.4,
pass_align=True,
observe=observe,
no_end_reset=True,
)
turn_degree_v2(ctrl, msg, degree=90, absolute=True)
section('任务1-13: 直线移动', "移动")
move_distance = 0.5
go_straight(ctrl, msg, distance=move_distance, observe=observe)
section('任务1-14: 模拟装货', "停止")
info('机器人躺下,模拟装货过程', "信息")
start_time = time.time()
ctrl.base_msg.lie_down(wait_time=time_sleep)
elapsed = time.time() - start_time
timing("装货过程", elapsed)
section('任务1-15: 站起来', "移动")
ctrl.base_msg.stand_up()
section('任务1-16: 返回', "移动")
go_straight(ctrl, msg, distance=-(move_distance + res['radius']), observe=observe)
turn_degree_v2(ctrl, msg, degree=179, absolute=True)
section('任务1-17: 90度转弯', "旋转")
turn_success, res = arc_turn_around_hori_line(
ctrl=ctrl,
msg=msg,
angle_deg=-85 if direction else 85,
radius=res['radius'] * 2,
pass_align=True,
observe=observe,
)
section('任务1-18: 直线移动', "移动")
move_to_hori_line(ctrl, msg, target_distance=0.4, observe=observe)
section('任务1-19: 90度旋转', "旋转")
turn_degree_v2(ctrl, msg, degree=0, absolute=True)
go_straight(ctrl, msg, distance=-1.3, observe=observe)
# go_to_xy(ctrl, msg, target_x=-0.2, target_y=0, observe=observe) # TEST
success("任务1-back完成", "完成")
# section

0
task_2/Gait_Def_crawl.toml Normal file → Executable file
View File

0
task_2/Gait_Params_crawl.toml Normal file → Executable file
View File

0
task_2/README_crawl_gait.md Normal file → Executable file
View File

0
task_2/crawl_gait.py Normal file → Executable file
View File

0
task_2/file_send_lcmt.py Normal file → Executable file
View File

0
task_2/robot_control_cmd_lcmt.py Normal file → Executable file
View File

0
task_2/test_crawl_integration.py Normal file → Executable file
View File

View File

@ -22,13 +22,12 @@ from base_move.center_on_dual_tracks import center_on_dual_tracks
from file_send_lcmt import file_send_lcmt
from utils.yellow_area_analyzer import analyze_yellow_area_ratio
from utils.detect_dual_track_lines import detect_dual_track_lines
from utils.speech_demo import speak
# 创建本模块特定的日志记录器
logger = get_logger("任务3")
observe = True
YELLOW_RATIO_THRESHOLD = 0.15 # TODO 黄色区域比例阈值
YELLOW_RATIO_THRESHOLD = 0.03 # TODO 黄色区域比例阈值
def run_task_3(ctrl, msg, time_sleep=5000):
section('任务3上下坡', "启动")
@ -55,8 +54,19 @@ def run_task_3(ctrl, msg, time_sleep=5000):
msg.life_count += 1
ctrl.Send_cmd(msg)
speak("检测到黄灯")
info("开始原地站立3秒", "站立")
speak('5')
time.sleep(time_sleep / 1000)
speak('4')
time.sleep(time_sleep / 1000)
speak('3')
time.sleep(time_sleep / 1000)
speak('2')
time.sleep(time_sleep / 1000)
speak('1')
time.sleep(time_sleep / 1000)
info("完成原地站立", "站立")
@ -76,7 +86,9 @@ def run_task_3_back(ctrl, msg, time_sleep=5000):
ctrl.Send_cmd(msg)
info("开始原地站立3秒", "站立")
time.sleep(time_sleep / 1000)
speak()
time.sleep(time_sleep / 5000)
info("完成原地站立", "站立")
section('任务3-3up and down', "开始")
@ -222,6 +234,8 @@ def go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3, max_
dy = final_position[1] - start_position[1]
final_distance = math.sqrt(dx*dx + dy*dy)
if observe:
if yellow_decreasing:
success(f"成功检测到黄色区域峰值并停止,峰值占比: {max_yellow_ratio:.2%}, 总移动距离: {final_distance:.2f}", "完成")

View File

@ -24,8 +24,8 @@ logger = get_logger("任务4")
observe = True
STONE_DISTANCE = 4.0 # TODO 距离参数需要微调
RED_RATIO_THRESHOLD = 0.35 # TODO 红色区域比例阈值需要微调
STONE_DISTANCE = 4.5 # TODO 距离参数需要微调
RED_RATIO_THRESHOLD = 0.18 # TODO 红色区域比例阈值需要微调
def run_task_4(ctrl, msg):
info('开始执行任务4...', "启动")
@ -59,7 +59,7 @@ def run_task_4_back(ctrl, msg):
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
section('任务4-1移动直到色天空比例低于阈值', "天空检测")
section('任务4-1移动直到色天空比例低于阈值', "天空检测")
go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2)
section('任务4-2通过栏杆', "移动")

View File

@ -17,6 +17,7 @@ from base_move.move_base_hori_line import (
calculate_distance_to_line, move_to_hori_line, arc_turn_around_hori_line
)
from base_move.center_on_dual_tracks import center_on_dual_tracks
from utils.speech_demo import speak
# from base_move.follow_dual_tracks import follow_dual_tracks
SLEEP_TIME = 3000
@ -229,6 +230,9 @@ def run_task_5(ctrl, msg, direction='left', observe=False, time_sleep=5000):
else:
error("未能成功到达横线前指定距离", "失败")
if res['qr_result'] == 'B-2':speak("B 区库位 2")
else:speak("B 区库位 1")
section('任务5-2移动到卸货点', "移动")
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False)
if direction == 'right' and res['qr_result'] == 'B-2' or direction == 'left' and res['qr_result'] == 'B-1':

0
test/demo_test/auredemo.py Normal file → Executable file
View File

0
test/demo_test/qr_detect_demo.py Normal file → Executable file
View File

0
test/demo_test/rgb_camera_demo.py Normal file → Executable file
View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.5 KiB

0
test_ai_camera_integration.py Normal file → Executable file
View File

0
tmp/auredemo2.py Normal file → Executable file
View File

0
tmp/interdemo3.py Normal file → Executable file
View File

0
tmp/interdemo4.py Normal file → Executable file
View File

0
tmp/new.py Normal file → Executable file
View File

0
tmp/shoushi.py Normal file → Executable file
View File

0
tmp/turndemo.py Normal file → Executable file
View File

0
turndemo.py Normal file → Executable file
View File

0
utils/fisheye.py Normal file → Executable file
View File

View File

@ -199,7 +199,7 @@ class ImageSubscriber(Node):
try:
self.cv_image_rgb = self.bridge.imgmsg_to_cv2(msg, 'bgr8')
if time.time() - self.last_save_time['rgb'] >= self.save_interval:
# self.save_image(self.cv_image_rgb, 'rgb')
self.save_image(self.cv_image_rgb, 'rgb')
self.last_save_time['rgb'] = time.time()
except Exception as e:
self.get_logger().error(f"RGB图像处理错误: {str(e)}")
@ -226,7 +226,7 @@ class ImageSubscriber(Node):
try:
self.cv_image_ai = self.bridge.imgmsg_to_cv2(msg, 'bgr8')
if time.time() - self.last_save_time['ai'] >= self.save_interval:
# self.save_image(self.cv_image_ai, 'ai')
self.save_image(self.cv_image_ai, 'ai')
self.last_save_time['ai'] = time.time()
except Exception as e:
self.get_logger().error(f"ai图像处理错误: {str(e)}")

267
utils/linetrack.py Executable file
View File

@ -0,0 +1,267 @@
import rclpy
from rclpy.node import Node
from cv_bridge import CvBridge
from sensor_msgs.msg import Image
from std_msgs.msg import Float32
import cv2
import numpy as np
from message_filters import ApproximateTimeSynchronizer, Subscriber
from rclpy.qos import QoSProfile, ReliabilityPolicy
class BirdseyeNode(Node):
def __init__(self):
super().__init__('birdseye_node')
self.bridge = CvBridge()
# 左右鱼眼订阅
self.left_sub = Subscriber(self, Image, '/image_left')
self.right_sub = Subscriber(self, Image, '/image_right')
self.ts = ApproximateTimeSynchronizer(
[self.left_sub, self.right_sub],
queue_size=10,
slop=0.5
)
self.ts.registerCallback(self.callback)
qos = QoSProfile(depth=10, reliability=ReliabilityPolicy.BEST_EFFORT)
self.proc_pub_left = self.create_publisher(Image, '/image_proc_left', 10)
self.proc_pub_right = self.create_publisher(Image, '/image_proc_right', 10)
self.trans_pub_left = self.create_publisher(Image, '/image_tran_left', 10)
self.trans_pub_right = self.create_publisher(Image, '/image_tran_right', 10)
self.line_error_pub = self.create_publisher(Float32, '/line_error', qos)
self.last_slope = 0.0
# 前置RGB订阅
self.rgb_sub = self.create_subscription(Image, '/image_rgb', self.rgb_callback, 10)
self.proc_pub_rgb = self.create_publisher(Image, '/image_proc_rgb', 10)
self.line_distance_pub = self.create_publisher(Float32, '/line_distance', qos)
# 相机参数
fx = 215.0699086206705
fy = 215.0699086206705
cx = 250.6595680010422
cy = 197.9387845612447
self.K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
self.D = np.array([-2.803862613372903e-04, -7.223158724979862e-06,
1.437534138630982e-08, 0.0])
self.dim = (500, 400)
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(
self.K, self.D, self.dim, np.eye(3), balance=0.24
)
new_K[0, 2], new_K[1, 2] = self.dim[0] / 2, self.dim[1] / 2
self.map1_left, self.map2_left = cv2.fisheye.initUndistortRectifyMap(
self.K, self.D, np.eye(3), new_K, self.dim, cv2.CV_16SC2
)
self.map1_right, self.map2_right = cv2.fisheye.initUndistortRectifyMap(
self.K, self.D, np.eye(3), new_K, self.dim, cv2.CV_16SC2
)
self.get_logger().info("鱼眼去畸变节点启动")
self.filtered_slope_left = None
self.filtered_slope_right = None
self.alpha = 1.0
self.jump_threshold = 0.05
self.line_error = 0.0 # 保存 line_error 供 distance 调整使用
def adaptive_ema(self, new_val, prev_filtered):
if prev_filtered is None:
return new_val
if abs(new_val - prev_filtered) > self.jump_threshold:
return new_val
return self.alpha * new_val + (1 - self.alpha) * prev_filtered
def detect_slope(self, img, side='left', roi_h=180, roi_w=200, y_start=None):
"""黄线检测 + 底部边界斜率计算"""
h, w = img.shape[:2]
# ROI纵向范围
if y_start is None:
y1 = h - roi_h
else:
y1 = y_start
y2 = y1 + roi_h
# ROI横向范围
x_center = w // 2
x1, x2 = x_center - roi_w // 2, x_center + roi_w // 2
roi = img[y1:y2, x1:x2]
x_offset, y_offset = x1, y1
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# 黄色范围
if side == 'rgb':
lower_yellow = np.array([20, 80, 60])
upper_yellow = np.array([45, 255, 255])
else:
lower_yellow = np.array([25, 100, 60])
upper_yellow = np.array([45, 255, 255])
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
kernel = np.ones((5, 5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
_, contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None, img.copy(), None
largest = max(contours, key=cv2.contourArea)
if cv2.contourArea(largest) < 30:
return None, img.copy(), None
contour_shifted = largest + np.array([[x_offset, y_offset]])
all_pts = contour_shifted.reshape(-1, 2)
hsv_full = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
black_mask = cv2.inRange(hsv_full, np.array([0, 0, 0]), np.array([180, 60, 160]))
bottom_edge_pts = []
x_min, x_max = all_pts[:, 0].min(), all_pts[:, 0].max()
for x in range(x_min, x_max + 1):
col_pts = all_pts[all_pts[:, 0] == x]
if len(col_pts) > 0:
y_bottom = col_pts[:, 1].max()
check_y = min(y_bottom + 1, h - 1)
if black_mask[check_y, x] > 0:
bottom_edge_pts.append([x, y_bottom])
bottom_edge_pts = np.array(bottom_edge_pts)
if len(bottom_edge_pts) < 2:
return None, img.copy(), None
m, b = np.polyfit(bottom_edge_pts[:, 0], bottom_edge_pts[:, 1], 1)
m_corrected = -m
img_with_line = img.copy()
x1_line, x2_line = bottom_edge_pts[:, 0].min(), bottom_edge_pts[:, 0].max()
y1_line, y2_line = m * x1_line + b, m * x2_line + b
cv2.line(img_with_line, (int(x1_line), int(y1_line)),
(int(x2_line), int(y2_line)), (0, 0, 255), 2)
cv2.drawContours(img_with_line, [contour_shifted], -1, (255, 0, 0), 2)
for px, py in bottom_edge_pts:
cv2.circle(img_with_line, (int(px), int(py)), 3, (255, 0, 255), -1)
return m_corrected, img_with_line, bottom_edge_pts
def rgb_callback(self, msg):
"""RGB前置摄像头处理"""
try:
img = self.bridge.imgmsg_to_cv2(msg, 'bgr8')
h, w = img.shape[:2]
y_start = h - 180
roi_h = 180
roi_w = w
slope, proc_img, _ = self.detect_slope(
img, side='rgb', roi_h=roi_h, roi_w=roi_w, y_start=y_start
)
if slope == 0.0 or slope is None:
self.get_logger().info(f"[RGB] 使用上一帧斜率: {self.last_slope:.4f}")
slope = self.last_slope
self.last_slope = slope
self.proc_pub_rgb.publish(self.bridge.cv2_to_imgmsg(proc_img, 'bgr8'))
self.rgb_slope = slope
self.get_logger().info(f"[RGB] 计算斜率: {slope:.4f}")
except Exception as e:
self.get_logger().error(f"[RGB] 处理失败: {e}")
self.rgb_slope = 0.0
def callback(self, left_msg, right_msg):
"""左右鱼眼主回调"""
try:
left_img = self.bridge.imgmsg_to_cv2(left_msg, 'bgr8')
right_img = self.bridge.imgmsg_to_cv2(right_msg, 'bgr8')
except Exception as e:
self.get_logger().error(f"[步骤1] 转换图像失败: {e}")
return
try:
left_undistort = cv2.remap(
left_img, self.map1_left, self.map2_left,
cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT
)
right_undistort = cv2.remap(
right_img, self.map1_right, self.map2_right,
cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT
)
right_undistort = cv2.resize(right_undistort, (left_undistort.shape[1], left_undistort.shape[0]))
self.trans_pub_left.publish(self.bridge.cv2_to_imgmsg(left_undistort, 'bgr8'))
self.trans_pub_right.publish(self.bridge.cv2_to_imgmsg(right_undistort, 'bgr8'))
except Exception as e:
self.get_logger().error(f"[步骤2] 去畸变或发布失败: {e}")
return
try:
h, w = left_undistort.shape[:2]
roi_w, roi_h = 80, 240
slope_left, left_proc_img, left_pts = self.detect_slope(left_undistort, side='left', roi_h=roi_h, roi_w=roi_w)
slope_right, right_proc_img, right_pts = self.detect_slope(right_undistort, side='right', roi_h=roi_h, roi_w=roi_w)
distance_left = np.mean(left_pts[:, 1]) if left_pts is not None else 0.0
distance_right = np.mean(right_pts[:, 1]) if right_pts is not None else 0.0
line_distance = distance_left - distance_right
# 如果 line_error 和 line_distance 同号,则 distance * 1.5
if (self.line_error > 0 and line_distance > 0) or (self.line_error < 0 and line_distance < 0):
line_distance *= 1.5
if left_pts is not None:
for px, py in left_pts:
cv2.line(left_proc_img, (px, py), (px, int(h)), (0, 0, 255), 1)
if right_pts is not None:
for px, py in right_pts:
cv2.line(right_proc_img, (px, py), (px, int(h)), (0, 0, 255), 1)
self.line_distance_pub.publish(Float32(data=float(line_distance)))
self.get_logger().info(f"[FishEye] 左右底部距离: {distance_left:.2f}, {distance_right:.2f}, line_distance: {line_distance:.2f}")
self.proc_pub_left.publish(self.bridge.cv2_to_imgmsg(left_proc_img, 'bgr8'))
self.proc_pub_right.publish(self.bridge.cv2_to_imgmsg(right_proc_img, 'bgr8'))
except Exception as e:
self.get_logger().error(f"[步骤3] 鱼眼处理失败: {e}")
return
try:
rgb_slope = getattr(self, 'rgb_slope', 0.0)
if rgb_slope > 0:
self.line_error = 6.0
elif rgb_slope < 0:
self.line_error = -10.0
else:
self.line_error = 0.0
self.get_logger().info(f"RGB斜率(line_error): {self.line_error:.4f}")
self.line_error_pub.publish(Float32(data=float(self.line_error)))
except Exception as e:
self.get_logger().error(f"[步骤4] 发布line_error失败: {e}")
return
def main(args=None):
rclpy.init(args=args)
node = BirdseyeNode()
try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 92 KiB

284
utils/shoushi_demo.py Executable file
View File

@ -0,0 +1,284 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import rclpy
from rclpy.node import Node
from protocol.srv import GestureActionControl
from protocol.msg import GestureActionResult
from std_srvs.srv import Trigger
import time
import sys
class GestureControlNode(Node):
def __init__(self):
super().__init__('gesture_control_node')
# 当前状态变量
self.current_state = "waiting_for_loading" # 可能的状态: waiting_for_loading, loading, transporting, waiting_for_unloading, unloading
# 创建手势控制服务客户端
self.gesture_control_cli = self.create_client(GestureActionControl, '/mi_desktop_48_b0_2d_7b_05_1d/gesture_action_control')
# 创建手势识别结果订阅
self.gesture_sub = self.create_subscription(
GestureActionResult,
'/mi_desktop_48_b0_2d_7b_05_1d/gesture_action_msg',
self.gesture_callback,
10)
# 假设存在运输开始和完成的服务
self.start_transport_cli = self.create_client(Trigger, '/mi_desktop_48_b0_2d_7b_05_1d/start_transport')
self.complete_unloading_cli = self.create_client(Trigger, '/mi_desktop_48_b0_2d_7b_05_1d/complete_unloading')
# 定时器用于状态检查
self.timer = self.create_timer(1.0, self.timer_callback)
self.get_logger().info("手势控制节点已启动")
# 手势识别超时时间(秒)
self.gesture_timeout = 60
# 最后一次检测到手势的时间
self.last_gesture_time = 0
# 手势识别是否激活的标志
self.is_gesture_active = False
def activate_gesture_recognition(self):
"""激活手势识别功能"""
while not self.gesture_control_cli.wait_for_service(timeout_sec=1.0):
self.get_logger().info('手势控制服务不可用,等待中...')
req = GestureActionControl.Request()
req.command = GestureActionControl.Request.START_ALGO
req.timeout = self.gesture_timeout
future = self.gesture_control_cli.call_async(req)
future.add_done_callback(self.gesture_control_callback)
self.get_logger().info("已激活手势识别功能")
self.is_gesture_active = True
def deactivate_gesture_recognition(self):
"""关闭手势识别功能"""
while not self.gesture_control_cli.wait_for_service(timeout_sec=1.0):
self.get_logger().info('手势控制服务不可用,等待中...')
req = GestureActionControl.Request()
req.command = GestureActionControl.Request.STOP_ALGO
future = self.gesture_control_cli.call_async(req)
future.add_done_callback(self.gesture_control_callback)
self.get_logger().info("已关闭手势识别功能")
self.is_gesture_active = False
def gesture_control_callback(self, future):
"""手势控制服务调用回调"""
try:
response = future.result()
if response.code == GestureActionControl.Response.RESULT_SUCCESS:
self.get_logger().info("手势控制服务调用成功")
else:
self.get_logger().warn("手势控制服务繁忙")
except Exception as e:
self.get_logger().error(f"手势控制服务调用失败: {e}")
def gesture_callback(self, msg):
"""手势识别结果回调"""
if not self.is_gesture_active:
return
self.last_gesture_time = time.time()
# 手势映射
gesture_names = {
0: "无手势",
1: "手掌拉近",
2: "手掌推开",
3: "手向上抬",
4: "手向下压",
5: "手向左推",
6: "手向右推",
7: "停止手势",
8: "大拇指朝上",
9: "张开手掌或手指",
10: "闭合手掌或手指",
11: "大拇指朝下"
}
gesture_name = gesture_names.get(msg.id, "未知手势")
self.get_logger().info(f"检测到手势: {gesture_name} (ID: {msg.id})")
# 根据当前状态和手势执行相应操作
if self.current_state == "loading" and msg.id == 8: # 大拇指朝上表示完成配货
self.complete_loading()
elif self.current_state == "unloading" and msg.id == 8: # 大拇指朝上表示完成卸货
self.complete_unloading()
elif msg.id == 7: # 停止手势
self.get_logger().info("检测到停止手势")
def complete_loading(self):
"""完成配货操作"""
self.get_logger().info("配货完成,开始运输")
# 调用开始运输服务
if self.start_transport_cli.wait_for_service(timeout_sec=1.0):
req = Trigger.Request()
future = self.start_transport_cli.call_async(req)
future.add_done_callback(self.transport_start_callback)
else:
self.get_logger().warn("开始运输服务不可用")
# 更新状态
self.current_state = "transporting"
def transport_start_callback(self, future):
"""运输开始服务回调"""
try:
response = future.result()
if response.success:
self.get_logger().info("运输已开始")
else:
self.get_logger().warn("运输启动失败")
except Exception as e:
self.get_logger().error(f"运输服务调用失败: {e}")
def complete_unloading(self):
"""完成卸货操作"""
self.get_logger().info("卸货完成,准备新的配货")
# 调用完成卸货服务
if self.complete_unloading_cli.wait_for_service(timeout_sec=1.0):
req = Trigger.Request()
future = self.complete_unloading_cli.call_async(req)
future.add_done_callback(self.unloading_complete_callback)
else:
self.get_logger().warn("完成卸货服务不可用")
# 更新状态
self.current_state = "waiting_for_loading"
def unloading_complete_callback(self, future):
"""卸货完成服务回调"""
try:
response = future.result()
if response.success:
self.get_logger().info("卸货已完成确认")
else:
self.get_logger().warn("卸货完成确认失败")
except Exception as e:
self.get_logger().error(f"卸货完成服务调用失败: {e}")
def timer_callback(self):
"""定时器回调,用于状态检查和超时处理"""
# 检查手势识别是否激活且超时
if self.is_gesture_active and time.time() - self.last_gesture_time > self.gesture_timeout:
self.get_logger().info("手势识别超时,重新激活")
self.activate_gesture_recognition()
self.last_gesture_time = time.time()
# 这里可以添加状态机逻辑根据实际需求更新current_state
# 例如当机器狗到达配货区域时设置self.current_state = "loading"
# 当机器狗到达卸货区域时设置self.current_state = "unloading"
def update_state(self, new_state):
"""更新机器狗状态"""
old_state = self.current_state
self.current_state = new_state
self.get_logger().info(f"状态更新: {old_state} -> {new_state}")
# 如果进入需要手势交互的状态,确保手势识别已激活
if new_state in ["loading", "unloading"]:
self.activate_gesture_recognition()
def start_gesture_recognition(timeout=60):
"""启动手势识别功能(供外部调用)"""
rclpy.init()
node = GestureControlNode()
try:
# 设置超时时间
node.gesture_timeout = timeout
# 激活手势识别
node.activate_gesture_recognition()
# 保持节点运行
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()
def stop_gesture_recognition():
"""关闭手势识别功能(供外部调用)"""
rclpy.init()
node = GestureControlNode()
try:
# 关闭手势识别
node.deactivate_gesture_recognition()
# 短暂延迟确保完成
time.sleep(2)
finally:
node.destroy_node()
rclpy.shutdown()
def main(args=None):
# 检查命令行参数
if len(sys.argv) > 1:
command = sys.argv[1]
if command == "start":
# 启动手势识别
timeout = 60
if len(sys.argv) > 2:
try:
timeout = int(sys.argv[2])
except ValueError:
print(f"无效的超时时间: {sys.argv[2]}使用默认值60秒")
print(f"启动手势识别,超时时间: {timeout}")
start_gesture_recognition(timeout)
return
elif command == "stop":
# 停止手势识别
print("停止手势识别")
stop_gesture_recognition()
return
elif command == "test":
# 测试模式:启动手势识别,运行一段时间后停止
print("测试模式启动手势识别5秒后停止")
start_gesture_recognition(5)
time.sleep(5)
stop_gesture_recognition()
return
else:
print(f"未知命令: {command}")
print("可用命令: start [timeout], stop, test")
return
# 如果没有参数,运行原始的主函数
rclpy.init(args=args)
gesture_control_node = GestureControlNode()
try:
# 激活手势识别
gesture_control_node.activate_gesture_recognition()
# 运行节点
rclpy.spin(gesture_control_node)
except KeyboardInterrupt:
pass
finally:
gesture_control_node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()