refactor(main): integrate go_to_xy_example function for coordinate navigation

- Add run_go_to_xy_example function call in main.py for enhanced navigation capabilities.
- Comment out run_task_1 to streamline task execution flow.
This commit is contained in:
havoc420ubuntu 2025-05-26 15:06:08 +00:00
parent c5cd4a4091
commit ce369bf718
3 changed files with 378 additions and 1 deletions

268
base_move/go_to_xy.py Normal file
View File

@ -0,0 +1,268 @@
import math
import time
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from utils.localization_lcmt import localization_lcmt
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
from base_move.turn_degree import turn_degree, turn_degree_twice
from base_move.go_straight import go_straight
# 创建本模块特定的日志记录器
logger = get_logger("坐标移动")
def go_to_xy(ctrl, msg, target_x, target_y, speed=0.5, precision=True, observe=False):
"""
控制机器人移动到指定的(x,y)坐标位置使用直接xy速度控制
参数:
ctrl: Robot_Ctrl 对象包含里程计信息
msg: robot_control_cmd_lcmt 对象用于发送命令
target_x: 目标X坐标()
target_y: 目标Y坐标()
speed: 行走速度(/)范围0.1~1.0默认为0.5
precision: 是否使用高精度模式更慢速度默认为True
observe: 是否输出中间状态信息默认为False
返回:
bool: 是否成功完成移动到目标位置
"""
# 获取当前位置
current_position = ctrl.odo_msg.xyz
current_x, current_y = current_position[0], current_position[1]
if observe:
section('目标点导航', "开始")
info(f"当前位置: ({current_x:.3f}, {current_y:.3f})", "位置")
info(f"目标位置: ({target_x:.3f}, {target_y:.3f})", "目标")
# 在起点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(current_x, current_y,
current_position[2] if len(current_position) > 2 else 0.0,
'blue', observe=True)
# 在目标点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(target_x, target_y, 0.0, 'green', observe=True)
# 计算与目标点的距离和角度
dx = target_x - current_x
dy = target_y - current_y
distance = math.sqrt(dx*dx + dy*dy)
# 如果已经非常接近目标,无需移动
if distance < 0.05: # 5厘米以内视为已达到
if observe:
success("已处于目标位置附近,无需移动", "完成")
return True
if observe:
info(f"到目标点的距离: {distance:.3f}", "路径")
# 限制速度范围
max_speed = min(max(abs(speed), 0.1), 1.0)
if precision:
max_speed = min(max_speed, 0.5) # 高精度模式下限制最大速度
# 根据距离动态调整速度
if distance > 1.0:
actual_speed = max_speed
elif distance > 0.5:
actual_speed = max_speed * 0.8
elif distance > 0.2:
actual_speed = max_speed * 0.6
else:
actual_speed = max_speed * 0.4
# 设置移动命令基本参数
msg.mode = 11 # Locomotion模式
msg.gait_id = 26 # 自变频步态
msg.step_height = [0.06, 0.06] # 抬腿高度
# 估算移动时间,但实际上会通过里程计控制
estimated_time = distance / actual_speed
timeout = estimated_time + 5 # 增加超时时间为预计移动时间加5秒
# 监控移动过程
start_time = time.time()
position_check_interval = 0.05 # 位置检查间隔(秒)
last_check_time = start_time
last_distance = distance
stall_count = 0
if observe:
info(f"开始移动,预计用时 {estimated_time:.2f}", "移动")
# 监控移动到达目标点
while time.time() - start_time < timeout:
current_time = time.time()
# 按固定间隔检查位置,减少计算负担
if current_time - last_check_time >= position_check_interval:
# 获取当前位置
current_position = ctrl.odo_msg.xyz
current_x, current_y = current_position[0], current_position[1]
# 计算新的位移向量和距离
dx = target_x - current_x
dy = target_y - current_y
current_distance = math.sqrt(dx*dx + dy*dy)
# 判断是否已经足够接近目标
if current_distance < 0.05: # 5厘米以内视为已达到
break
# 计算移动进度
progress = 1.0 - (current_distance / distance)
# 检测是否卡住(距离变化很小)
distance_change = last_distance - current_distance
if abs(distance_change) < 0.005: # 变化小于5毫米
stall_count += 1
if stall_count > 20: # 连续多次检测到几乎没有移动
if observe:
warning("检测到机器人可能卡住,调整策略", "移动")
# 可能是卡住了,稍微增加速度
actual_speed = min(actual_speed * 1.2, max_speed)
stall_count = 0
else:
stall_count = 0
# 动态调整速度,接近目标时减速
if current_distance < 0.2: # 接近目标时减速
target_speed = max_speed * 0.3
elif current_distance < 0.5:
target_speed = max_speed * 0.5
else:
target_speed = actual_speed
# 计算速度分量,归一化后乘以目标速度
speed_factor = target_speed / current_distance if current_distance > 0 else 0
vel_x = dx * speed_factor
vel_y = dy * speed_factor
# 更新速度命令
msg.vel_des = [vel_x, vel_y, 0] # [前进速度, 侧向速度, 角速度]
msg.duration = 0 # 持续执行直到下一个命令
msg.life_count += 1
ctrl.Send_cmd(msg)
if observe and (current_time - start_time) % 1.0 < position_check_interval:
debug(f"当前位置: ({current_x:.3f}, {current_y:.3f}), 剩余距离: {current_distance:.3f}米, 完成: {progress*100:.1f}%", "移动")
debug(f"速度: x={vel_x:.2f}, y={vel_y:.2f}", "速度")
last_check_time = current_time
last_distance = current_distance
time.sleep(0.01) # 小间隔检查位置
# 平滑停止
if hasattr(ctrl.base_msg, 'stop_smooth'):
ctrl.base_msg.stop_smooth()
else:
ctrl.base_msg.stop()
# 获取最终位置并计算与目标的误差
final_position = ctrl.odo_msg.xyz
final_x, final_y = final_position[0], final_position[1]
final_dx = target_x - final_x
final_dy = target_y - final_y
final_distance = math.sqrt(final_dx*final_dx + final_dy*final_dy)
if observe:
info(f"最终位置: ({final_x:.3f}, {final_y:.3f})", "位置")
info(f"与目标的距离误差: {final_distance:.3f}", "误差")
# 在终点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(final_x, final_y,
final_position[2] if len(final_position) > 2 else 0.0,
'red', observe=True)
# 判断是否成功到达目标点误差在10厘米以内
nav_success = final_distance < 0.1
if observe:
if nav_success:
success(f"成功到达目标点,误差: {final_distance:.3f}", "成功")
else:
warning(f"未能精确到达目标点,误差: {final_distance:.3f}", "警告")
return nav_success
def go_to_xy_with_correction(ctrl, msg, target_x, target_y, speed=0.5, precision=True,
max_attempts=2, observe=False):
"""
控制机器人移动到指定的(x,y)坐标位置并在必要时进行路径修正
参数:
ctrl: Robot_Ctrl 对象包含里程计信息
msg: robot_control_cmd_lcmt 对象用于发送命令
target_x: 目标X坐标()
target_y: 目标Y坐标()
speed: 行走速度(/)范围0.1~1.0默认为0.5
precision: 是否使用高精度模式默认为True
max_attempts: 最大尝试次数默认为2
observe: 是否输出中间状态信息默认为False
返回:
bool: 是否成功完成移动到目标位置
"""
attempt = 1
while attempt <= max_attempts:
if observe:
section(f'导航尝试 {attempt}/{max_attempts}', "开始")
# 执行基本导航
success = go_to_xy(ctrl, msg, target_x, target_y, speed, precision, observe)
if success:
return True
# 如果导航失败且还有尝试次数,进行修正
if attempt < max_attempts:
if observe:
warning(f"{attempt}次导航未达到预期精度,尝试修正", "修正")
# 获取当前位置
current_position = ctrl.odo_msg.xyz
current_x, current_y = current_position[0], current_position[1]
# 计算与目标点的距离和角度
dx = target_x - current_x
dy = target_y - current_y
distance = math.sqrt(dx*dx + dy*dy)
# 如果距离很近但未达到成功标准,可能是卡住了
if distance < 0.2: # 20厘米以内
if observe:
info(f"距离目标很近 ({distance:.3f}米),使用更高精度方式移动", "策略")
# 使用更慢的速度和更高的精度
speed = speed * 0.6
precision = True
attempt += 1
# 获取最终位置并计算与目标的误差
final_position = ctrl.odo_msg.xyz
final_x, final_y = final_position[0], final_position[1]
final_dx = target_x - final_x
final_dy = target_y - final_y
final_distance = math.sqrt(final_dx*final_dx + final_dy*final_dy)
if observe:
if final_distance < 0.2:
warning(f"虽未达到精确目标,但已在目标附近 ({final_distance:.3f}米)", "部分成功")
else:
error(f"多次尝试后仍未能达到目标点,最终误差: {final_distance:.3f}", "失败")
return False
# 用法示例
if __name__ == "__main__":
# 这里是示例代码实际使用时需要提供合适的ctrl和msg对象
# 移动到坐标(1.0, 2.0)
# go_to_xy(ctrl, msg, 1.0, 2.0, speed=0.5, observe=True)
# 移动到坐标(0.0, 0.0)并自动修正
# go_to_xy_with_correction(ctrl, msg, 0.0, 0.0, speed=0.4, observe=True)
pass

View File

@ -24,6 +24,7 @@ from task_1.task_1 import run_task_1
from task_2_5.task_2_5 import run_task_2_5
from task_4.task_4 import run_task_4
from task_test.task_left_line import run_task_test
from task_test.go_to_xy_example import run_go_to_xy_example
pass_marker = True
@ -39,13 +40,16 @@ def main():
Ctrl.base_msg.stop() # BUG 垃圾指令 for eat
# time.sleep(100) # TEST
run_task_1(Ctrl, msg)
# run_task_1(Ctrl, msg)
# run_task_2_5(Ctrl, msg)
# run_task_4(Ctrl, msg)
# run_task_test(Ctrl, msg)
# 坐标导航示例
run_go_to_xy_example(Ctrl, msg)
# time.sleep(100)

View File

@ -0,0 +1,105 @@
import time
import sys
import os
# 添加父目录到路径,以便能够导入相关模块
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from base_move.go_to_xy import go_to_xy, go_to_xy_with_correction
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
# 创建本模块特定的日志记录器
logger = get_logger("坐标导航示例")
def run_go_to_xy_example(ctrl, msg):
"""
坐标导航示例任务展示如何使用go_to_xy功能实现精确导航
参数:
ctrl: Robot_Ctrl 对象
msg: robot_control_cmd_lcmt 对象
"""
section('坐标导航示例任务', "启动")
info('开始执行坐标导航示例...', "启动")
try:
# 示例1简单导航到一个目标点
section('示例1简单导航', "开始")
target_x, target_y = 0.8, 0.2 # 前进1米
info(f"移动到坐标点: ({target_x}, {target_y})", "目标")
nav_success = go_to_xy(ctrl, msg, target_x, target_y, speed=0.5, observe=True)
if nav_success:
success("成功到达目标点1", "完成")
else:
warning("未能精确到达目标点1", "警告")
return
# 等待2秒
time.sleep(2)
# 示例2使用自动修正的方式导航到目标点
section('示例2带修正的导航', "开始")
target_x, target_y = 0.0, 1.0 # 左转并前进1米
info(f"移动到坐标点: ({target_x}, {target_y})", "目标")
nav_success = go_to_xy_with_correction(
ctrl, msg, target_x, target_y,
speed=0.4, precision=True, max_attempts=2, observe=True
)
if nav_success:
success("成功到达目标点2", "完成")
else:
warning("未能精确到达目标点2", "警告")
# 等待2秒
time.sleep(2)
# 示例3使用坐标导航绕行矩形路径
section('示例3矩形路径导航', "开始")
info("执行矩形路径导航", "路径")
# 定义矩形四个顶点的坐标
rectangle_points = [
(0.0, 0.0), # 起点/终点
(1.0, 0.0), # 右侧点
(1.0, 1.0), # 右上角点
(0.0, 1.0), # 左上角点
]
# 依次导航到各个顶点
for i, (point_x, point_y) in enumerate(rectangle_points):
section(f'导航到矩形顶点 {i+1}/4', "移动")
info(f"目标坐标: ({point_x}, {point_y})", "目标")
nav_success = go_to_xy_with_correction(
ctrl, msg, point_x, point_y,
speed=0.5, precision=True, observe=True
)
if nav_success:
success(f"成功到达顶点 {i+1}", "完成")
else:
warning(f"未能精确到达顶点 {i+1}", "警告")
# 每个点之间短暂停顿
time.sleep(1)
# 示例完成,回到起点
section('示例任务完成', "结束")
info("坐标导航示例任务完成", "完成")
# 复位里程计(可选)
# ctrl.odo_reset()
except Exception as e:
error(f"执行过程中发生错误: {e}", "错误")
finally:
# 确保机器人停止
ctrl.base_msg.stop_smooth()
if __name__ == "__main__":
# 这里是示例代码实际使用时需要提供合适的ctrl和msg对象
pass