Enhance navigation and movement functions in tasks
- Updated main.py to adjust task execution flow and added print statements for debugging. - Refactored task_2.py to utilize go_to_xy_v2 for improved navigation accuracy and added an xy_flag parameter to run_task_2. - Introduced go_to_xy_with_correction_v2 and go_to_xy_v2 in go_to_xy.py for enhanced movement control and precision. - Modified task_2_5.py to incorporate turn_degree_v2 and added go_straight function for better maneuverability.
This commit is contained in:
parent
ea7c1d671a
commit
c083798042
@ -258,11 +258,368 @@ def go_to_xy_with_correction(ctrl, msg, target_x, target_y, speed=0.5, precision
|
||||
|
||||
return False
|
||||
|
||||
# 用法示例
|
||||
if __name__ == "__main__":
|
||||
# 这里是示例代码,实际使用时需要提供合适的ctrl和msg对象
|
||||
# 移动到坐标(1.0, 2.0)
|
||||
# go_to_xy(ctrl, msg, 1.0, 2.0, speed=0.5, observe=True)
|
||||
# 移动到坐标(0.0, 0.0)并自动修正
|
||||
# go_to_xy_with_correction(ctrl, msg, 0.0, 0.0, speed=0.4, observe=True)
|
||||
pass
|
||||
def go_to_xy_v2(ctrl, msg, target_x, target_y, speed=0.5, precision=True, observe=False):
|
||||
"""
|
||||
控制机器人移动到指定的(x,y)坐标位置,使用增强的里程计监控和校正机制
|
||||
|
||||
参数:
|
||||
ctrl: Robot_Ctrl 对象,包含里程计信息
|
||||
msg: robot_control_cmd_lcmt 对象,用于发送命令
|
||||
target_x: 目标X坐标(米)
|
||||
target_y: 目标Y坐标(米)
|
||||
speed: 行走速度(米/秒),范围0.1~1.0,默认为0.5
|
||||
precision: 是否使用高精度模式(更慢速度),默认为True
|
||||
observe: 是否输出中间状态信息,默认为False
|
||||
|
||||
返回:
|
||||
bool: 是否成功完成移动到目标位置
|
||||
"""
|
||||
# 获取当前位置
|
||||
current_position = ctrl.odo_msg.xyz
|
||||
current_x, current_y = current_position[0], current_position[1]
|
||||
|
||||
if observe:
|
||||
section('目标点导航V2', "开始")
|
||||
info(f"当前位置: ({current_x:.3f}, {current_y:.3f})", "位置")
|
||||
info(f"目标位置: ({target_x:.3f}, {target_y:.3f})", "目标")
|
||||
# 在起点放置标记
|
||||
if hasattr(ctrl, 'place_marker'):
|
||||
ctrl.place_marker(current_x, current_y,
|
||||
current_position[2] if len(current_position) > 2 else 0.0,
|
||||
'blue', observe=True)
|
||||
# 在目标点放置标记
|
||||
if hasattr(ctrl, 'place_marker'):
|
||||
ctrl.place_marker(target_x, target_y, 0.0, 'green', observe=True)
|
||||
|
||||
# 计算与目标点的距离
|
||||
dx = target_x - current_x
|
||||
dy = target_y - current_y
|
||||
distance = math.sqrt(dx*dx + dy*dy)
|
||||
|
||||
# 如果已经非常接近目标,无需移动
|
||||
if distance < 0.05: # 5厘米以内视为已达到
|
||||
if observe:
|
||||
success("已处于目标位置附近,无需移动", "完成")
|
||||
return True
|
||||
|
||||
if observe:
|
||||
info(f"到目标点的距离: {distance:.3f}米", "路径")
|
||||
|
||||
# 限制速度范围
|
||||
max_speed = min(max(abs(speed), 0.1), 1.0)
|
||||
if precision:
|
||||
max_speed = min(max_speed, 0.5) # 高精度模式下限制最大速度
|
||||
|
||||
# 根据距离动态调整速度
|
||||
if distance > 1.0:
|
||||
actual_speed = max_speed
|
||||
elif distance > 0.5:
|
||||
actual_speed = max_speed * 0.8
|
||||
elif distance > 0.2:
|
||||
actual_speed = max_speed * 0.6
|
||||
else:
|
||||
actual_speed = max_speed * 0.4
|
||||
|
||||
# 设置移动命令基本参数
|
||||
msg.mode = 11 # Locomotion模式
|
||||
msg.gait_id = 26 # 自变频步态
|
||||
msg.step_height = [0.06, 0.06] # 抬腿高度
|
||||
|
||||
# 估算移动时间,但实际上会通过里程计控制
|
||||
estimated_time = distance / actual_speed
|
||||
timeout = estimated_time + 5 # 增加超时时间为预计移动时间加5秒
|
||||
|
||||
# 增强的监控变量
|
||||
start_time = time.time()
|
||||
position_check_interval = 0.05 # 位置检查间隔(秒)
|
||||
last_check_time = start_time
|
||||
last_position_x, last_position_y = current_x, current_y
|
||||
last_distance = distance
|
||||
stall_count = 0
|
||||
position_history = [] # 用于存储历史位置,检测轨迹偏移
|
||||
|
||||
# 轨迹偏移检测阈值
|
||||
trajectory_check_interval = 0.2 # 每0.2秒检查一次轨迹
|
||||
last_trajectory_check = start_time
|
||||
max_trajectory_deviation = 0.15 # 最大允许的轨迹偏移(米)
|
||||
|
||||
if observe:
|
||||
info(f"开始移动,预计用时 {estimated_time:.2f}秒", "移动")
|
||||
|
||||
# 监控移动到达目标点
|
||||
while time.time() - start_time < timeout:
|
||||
current_time = time.time()
|
||||
|
||||
# 按固定间隔检查位置,减少计算负担
|
||||
if current_time - last_check_time >= position_check_interval:
|
||||
# 获取当前位置
|
||||
current_position = ctrl.odo_msg.xyz
|
||||
current_x, current_y = current_position[0], current_position[1]
|
||||
|
||||
# 记录位置历史用于轨迹分析
|
||||
position_history.append((current_x, current_y, current_time))
|
||||
# 只保留最近的位置历史
|
||||
if len(position_history) > 50:
|
||||
position_history = position_history[-50:]
|
||||
|
||||
# 计算新的位移向量和距离
|
||||
dx = target_x - current_x
|
||||
dy = target_y - current_y
|
||||
current_distance = math.sqrt(dx*dx + dy*dy)
|
||||
|
||||
# 判断是否已经足够接近目标
|
||||
if current_distance < 0.05: # 5厘米以内视为已达到
|
||||
break
|
||||
|
||||
# 计算移动进度
|
||||
progress = 1.0 - (current_distance / distance)
|
||||
|
||||
# 检测是否卡住(距离变化很小)
|
||||
distance_change = last_distance - current_distance
|
||||
position_change = math.sqrt((current_x - last_position_x)**2 + (current_y - last_position_y)**2)
|
||||
|
||||
if position_change < 0.005: # 几乎没有移动(5毫米以内)
|
||||
stall_count += 1
|
||||
if stall_count > 10: # 连续多次检测到几乎没有移动
|
||||
if observe:
|
||||
warning("检测到机器人可能卡住,调整策略", "移动")
|
||||
# 尝试短暂后退再前进
|
||||
msg.vel_des = [-0.1, 0, 0] # 小幅后退
|
||||
msg.life_count = (msg.life_count + 1) % 127
|
||||
ctrl.Send_cmd(msg)
|
||||
time.sleep(0.5)
|
||||
stall_count = 0
|
||||
continue
|
||||
else:
|
||||
stall_count = 0
|
||||
|
||||
# 动态调整速度,接近目标时减速
|
||||
if current_distance < 0.2: # 接近目标时减速
|
||||
target_speed = max_speed * 0.3
|
||||
elif current_distance < 0.5:
|
||||
target_speed = max_speed * 0.5
|
||||
else:
|
||||
target_speed = actual_speed
|
||||
|
||||
# 计算速度分量,归一化后乘以目标速度
|
||||
speed_factor = target_speed / current_distance if current_distance > 0 else 0
|
||||
vel_x = dx * speed_factor
|
||||
vel_y = dy * speed_factor
|
||||
|
||||
# 限制速度大小
|
||||
vel_magnitude = math.sqrt(vel_x*vel_x + vel_y*vel_y)
|
||||
if vel_magnitude > target_speed:
|
||||
scale_factor = target_speed / vel_magnitude
|
||||
vel_x *= scale_factor
|
||||
vel_y *= scale_factor
|
||||
|
||||
# 更新速度命令
|
||||
msg.vel_des = [vel_x, vel_y, 0] # [前进速度, 侧向速度, 角速度]
|
||||
msg.duration = 0 # 持续执行直到下一个命令
|
||||
msg.life_count = (msg.life_count + 1) % 127 # 防止溢出,确保life_count在int8_t范围内
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
if observe and (current_time - start_time) % 1.0 < position_check_interval:
|
||||
debug(f"当前位置: ({current_x:.3f}, {current_y:.3f}), 剩余距离: {current_distance:.3f}米, 完成: {progress*100:.1f}%", "移动")
|
||||
debug(f"速度: x={vel_x:.2f}, y={vel_y:.2f}", "速度")
|
||||
|
||||
# 保存当前状态用于下次比较
|
||||
last_check_time = current_time
|
||||
last_distance = current_distance
|
||||
last_position_x, last_position_y = current_x, current_y
|
||||
|
||||
time.sleep(0.01) # 小间隔检查位置
|
||||
|
||||
# 平滑停止
|
||||
if hasattr(ctrl.base_msg, 'stop_smooth'):
|
||||
ctrl.base_msg.stop_smooth()
|
||||
else:
|
||||
ctrl.base_msg.stop()
|
||||
|
||||
# 获取最终位置并计算与目标的误差
|
||||
final_position = ctrl.odo_msg.xyz
|
||||
final_x, final_y = final_position[0], final_position[1]
|
||||
final_dx = target_x - final_x
|
||||
final_dy = target_y - final_y
|
||||
final_distance = math.sqrt(final_dx*final_dx + final_dy*final_dy)
|
||||
|
||||
if observe:
|
||||
info(f"最终位置: ({final_x:.3f}, {final_y:.3f})", "位置")
|
||||
info(f"与目标的距离误差: {final_distance:.3f}米", "误差")
|
||||
# 在终点放置标记
|
||||
if hasattr(ctrl, 'place_marker'):
|
||||
ctrl.place_marker(final_x, final_y,
|
||||
final_position[2] if len(final_position) > 2 else 0.0,
|
||||
'red', observe=True)
|
||||
|
||||
# 判断是否成功到达目标点(误差在10厘米以内)
|
||||
nav_success = final_distance < 0.1
|
||||
|
||||
# 如果误差较大但还在可接受范围内,尝试精确调整
|
||||
if not nav_success and final_distance < 0.3:
|
||||
if observe:
|
||||
warning(f"第一阶段导航误差为 {final_distance:.3f}米,尝试精确调整", "调整")
|
||||
|
||||
# 使用直线模式进行精确调整
|
||||
msg.mode = 11
|
||||
msg.gait_id = 1 # 使用步行步态提高精度
|
||||
|
||||
# 计算新的速度分量,使用更低的速度
|
||||
dx = target_x - final_x
|
||||
dy = target_y - final_y
|
||||
adjust_distance = math.sqrt(dx*dx + dy*dy)
|
||||
adjust_speed = min(0.2, max_speed * 0.4) # 降低速度提高精度
|
||||
|
||||
# 计算速度分量
|
||||
speed_factor = adjust_speed / adjust_distance if adjust_distance > 0 else 0
|
||||
vel_x = dx * speed_factor
|
||||
vel_y = dy * speed_factor
|
||||
|
||||
# 短暂精确移动
|
||||
adjust_time = min(adjust_distance / adjust_speed * 1.5, 3.0) # 最多3秒的调整时间
|
||||
adjust_start = time.time()
|
||||
|
||||
while time.time() - adjust_start < adjust_time:
|
||||
# 更新当前位置
|
||||
current_position = ctrl.odo_msg.xyz
|
||||
current_x, current_y = current_position[0], current_position[1]
|
||||
|
||||
# 重新计算距离和方向
|
||||
dx = target_x - current_x
|
||||
dy = target_y - current_y
|
||||
current_distance = math.sqrt(dx*dx + dy*dy)
|
||||
|
||||
# 如果已经足够接近,提前结束
|
||||
if current_distance < 0.05:
|
||||
break
|
||||
|
||||
# 动态调整速度
|
||||
adjust_speed = min(0.2, current_distance * 0.5)
|
||||
speed_factor = adjust_speed / current_distance if current_distance > 0 else 0
|
||||
vel_x = dx * speed_factor
|
||||
vel_y = dy * speed_factor
|
||||
|
||||
# 发送命令
|
||||
msg.vel_des = [vel_x, vel_y, 0]
|
||||
msg.life_count = (msg.life_count + 1) % 127
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
if observe and (time.time() - adjust_start) % 0.5 < 0.05:
|
||||
debug(f"精确调整中: 位置 ({current_x:.3f}, {current_y:.3f}), 距离: {current_distance:.3f}米", "调整")
|
||||
|
||||
time.sleep(0.05)
|
||||
|
||||
# 停止
|
||||
if hasattr(ctrl.base_msg, 'stop_smooth'):
|
||||
ctrl.base_msg.stop_smooth()
|
||||
else:
|
||||
ctrl.base_msg.stop()
|
||||
|
||||
# 获取最终位置并重新计算误差
|
||||
final_position = ctrl.odo_msg.xyz
|
||||
final_x, final_y = final_position[0], final_position[1]
|
||||
final_dx = target_x - final_x
|
||||
final_dy = target_y - final_y
|
||||
final_distance = math.sqrt(final_dx*final_dx + final_dy*final_dy)
|
||||
|
||||
if observe:
|
||||
info(f"调整后最终位置: ({final_x:.3f}, {final_y:.3f})", "位置")
|
||||
info(f"调整后误差: {final_distance:.3f}米", "误差")
|
||||
# 更新终点标记
|
||||
if hasattr(ctrl, 'place_marker'):
|
||||
ctrl.place_marker(final_x, final_y,
|
||||
final_position[2] if len(final_position) > 2 else 0.0,
|
||||
'purple', observe=True)
|
||||
|
||||
# 重新判断是否成功
|
||||
nav_success = final_distance < 0.1
|
||||
|
||||
if observe:
|
||||
if nav_success:
|
||||
success(f"成功到达目标点,误差: {final_distance:.3f}米", "成功")
|
||||
else:
|
||||
warning(f"未能精确到达目标点,误差: {final_distance:.3f}米", "警告")
|
||||
|
||||
return nav_success
|
||||
def go_to_xy_with_correction_v2(ctrl, msg, target_x, target_y, speed=0.5, precision=True,
|
||||
max_attempts=2, observe=False):
|
||||
"""
|
||||
控制机器人移动到指定的(x,y)坐标位置,使用增强的里程计监控和校正机制,并在必要时进行多次尝试
|
||||
|
||||
参数:
|
||||
ctrl: Robot_Ctrl 对象,包含里程计信息
|
||||
msg: robot_control_cmd_lcmt 对象,用于发送命令
|
||||
target_x: 目标X坐标(米)
|
||||
target_y: 目标Y坐标(米)
|
||||
speed: 行走速度(米/秒),范围0.1~1.0,默认为0.5
|
||||
precision: 是否使用高精度模式,默认为True
|
||||
max_attempts: 最大尝试次数,默认为2
|
||||
observe: 是否输出中间状态信息,默认为False
|
||||
|
||||
返回:
|
||||
bool: 是否成功完成移动到目标位置
|
||||
"""
|
||||
attempt = 1
|
||||
|
||||
while attempt <= max_attempts:
|
||||
if observe:
|
||||
section(f'导航尝试V2 {attempt}/{max_attempts}', "开始")
|
||||
|
||||
# 执行增强版导航
|
||||
success = go_to_xy_v2(ctrl, msg, target_x, target_y, speed, precision, observe)
|
||||
|
||||
if success:
|
||||
return True
|
||||
|
||||
# 如果导航失败且还有尝试次数,进行修正
|
||||
if attempt < max_attempts:
|
||||
if observe:
|
||||
warning(f"第{attempt}次导航未达到预期精度,尝试不同策略", "修正")
|
||||
|
||||
# 获取当前位置
|
||||
current_position = ctrl.odo_msg.xyz
|
||||
current_x, current_y = current_position[0], current_position[1]
|
||||
|
||||
# 计算与目标点的距离和角度
|
||||
dx = target_x - current_x
|
||||
dy = target_y - current_y
|
||||
distance = math.sqrt(dx*dx + dy*dy)
|
||||
|
||||
# 距离较近时使用更精确的方式
|
||||
if distance < 0.3: # 30厘米以内
|
||||
if observe:
|
||||
info(f"距离目标较近 ({distance:.3f}米),使用精确模式移动", "策略")
|
||||
speed = min(speed * 0.6, 0.3) # 降低速度
|
||||
precision = True
|
||||
else:
|
||||
# 距离较远时尝试用分段路径
|
||||
if observe:
|
||||
info(f"距离目标较远 ({distance:.3f}米),尝试分段导航", "策略")
|
||||
# 计算中间点
|
||||
mid_x = current_x + dx * 0.5
|
||||
mid_y = current_y + dy * 0.5
|
||||
|
||||
# 先移动到中间点
|
||||
if observe:
|
||||
info(f"先移动到中间点 ({mid_x:.3f}, {mid_y:.3f})", "中间点")
|
||||
mid_success = go_to_xy_v2(ctrl, msg, mid_x, mid_y, speed, precision, observe)
|
||||
|
||||
if not mid_success and observe:
|
||||
warning("到达中间点失败,直接尝试目标点", "策略调整")
|
||||
|
||||
attempt += 1
|
||||
|
||||
# 获取最终位置并计算与目标的误差
|
||||
final_position = ctrl.odo_msg.xyz
|
||||
final_x, final_y = final_position[0], final_position[1]
|
||||
final_dx = target_x - final_x
|
||||
final_dy = target_y - final_y
|
||||
final_distance = math.sqrt(final_dx*final_dx + final_dy*final_dy)
|
||||
|
||||
if observe:
|
||||
if final_distance < 0.2:
|
||||
warning(f"虽未达到精确目标,但已在目标附近 ({final_distance:.3f}米)", "部分成功")
|
||||
else:
|
||||
error(f"多次尝试后仍未能达到目标点,最终误差: {final_distance:.3f}米", "失败")
|
||||
|
||||
return False
|
||||
|
6
main.py
6
main.py
@ -28,6 +28,7 @@ from task_test.task_left_line import run_task_test
|
||||
from task_5.task_5 import run_task_5
|
||||
# from task_test.go_to_xy_example import run_go_to_xy_example
|
||||
|
||||
|
||||
from base_move.turn_degree import turn_degree
|
||||
|
||||
pass_marker = True
|
||||
@ -44,10 +45,11 @@ def main():
|
||||
Ctrl.base_msg.stop() # BUG 垃圾指令 for eat
|
||||
|
||||
# time.sleep(100) # TEST
|
||||
run_task_1(Ctrl, msg)
|
||||
# run_task_1(Ctrl, msg)
|
||||
|
||||
arrow_direction = run_task_2(Ctrl, msg)
|
||||
arrow_direction = run_task_2(Ctrl, msg, xy_flag=False)
|
||||
|
||||
print(f"arrow_direction: {arrow_direction}")
|
||||
run_task_2_5(Ctrl, msg, direction=arrow_direction)
|
||||
|
||||
if arrow_direction == 'left':
|
||||
|
@ -8,7 +8,7 @@ import queue
|
||||
from threading import Thread, Lock
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from base_move.go_to_xy import go_to_xy
|
||||
from base_move.go_to_xy import go_to_xy, go_to_xy_v2
|
||||
from base_move.turn_degree import turn_degree, turn_degree_twice, turn_degree_v2
|
||||
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
|
||||
from utils.decode_arrow import detect_arrow_direction, visualize_arrow_detection
|
||||
@ -100,7 +100,7 @@ class AsyncArrowDetector:
|
||||
# 保存检测结果的可视化图像
|
||||
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
||||
save_path = f"{self.save_dir}/arrow_detection_{timestamp}.jpg"
|
||||
visualize_arrow_detection(img, save_path=save_path)
|
||||
# visualize_arrow_detection(img, save_path=save_path)
|
||||
info(f"箭头检测可视化结果已保存至: {save_path}", "箭头检测")
|
||||
except Exception as e:
|
||||
error(f"异步箭头检测出错: {str(e)}", "错误")
|
||||
@ -115,9 +115,9 @@ class AsyncArrowDetector:
|
||||
with self.lock:
|
||||
return self.arrow_result, self.result_time, self.last_processed_image
|
||||
|
||||
def run_task_2(ctrl, msg):
|
||||
def run_task_2(ctrl, msg, xy_flag=False):
|
||||
# 微调 xy 和角度
|
||||
go_to_xy(ctrl, msg, 0.9, 0.25, speed=0.5, observe=True)
|
||||
go_to_xy_v2(ctrl, msg, 0.9, 0.25, speed=0.5, observe=True)
|
||||
turn_degree(ctrl, msg, 0.8, absolute=True)
|
||||
|
||||
print('角度为',ctrl.odo_msg.rpy[2])
|
||||
@ -145,7 +145,7 @@ def run_task_2(ctrl, msg):
|
||||
(0.3,0,0.6,0,0,0,1),
|
||||
# #前走一点
|
||||
# (0.3,0,0,0,0,0,0.5)
|
||||
] # [vel_x, vel_z] 对应 [左转, 右转, 左转]
|
||||
] # [vel_x, vel_z] 对应 [左转, 右转, 左转]
|
||||
|
||||
gotoxy=[
|
||||
(0.87,0.23),
|
||||
@ -184,8 +184,9 @@ def run_task_2(ctrl, msg):
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
# 根据转弯方向调整持续时间(假设半圆需要3秒)
|
||||
go_to_xy(ctrl, msg, gotoxy[i][0], gotoxy[i][1], speed=0.5, observe=True)
|
||||
# 根据转弯方向调整持续时间(假设半圆需要3秒
|
||||
if xy_flag:
|
||||
go_to_xy(ctrl, msg, gotoxy[i][0], gotoxy[i][1], speed=0.5, observe=True)
|
||||
# 打印当前方向
|
||||
print(f"开始 {text[i]} ")
|
||||
print(f"第{i}次",'角度为',ctrl.odo_msg.rpy[2])
|
||||
@ -222,14 +223,14 @@ def run_task_2(ctrl, msg):
|
||||
image = ctrl.image_processor.get_current_image()
|
||||
if image is not None:
|
||||
# 直接在当前图像上检测
|
||||
arrow_direction = detect_arrow_direction(image, observe=True)
|
||||
arrow_direction = detect_arrow_direction(image, observe=False)
|
||||
info(f"直接检测到箭头方向: {arrow_direction}", "箭头检测")
|
||||
|
||||
# 保存检测结果的可视化图像
|
||||
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
||||
save_path = f"logs/image/arrow_detection_final_{timestamp}.jpg"
|
||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||
visualize_arrow_detection(image, save_path=save_path)
|
||||
# visualize_arrow_detection(image, save_path=save_path)
|
||||
info(f"最终箭头检测可视化结果已保存至: {save_path}", "箭头检测")
|
||||
else:
|
||||
warning("无法获取当前图像,箭头方向检测失败", "箭头检测")
|
||||
|
@ -5,7 +5,8 @@ import os
|
||||
# 添加父目录到路径,以便能够导入utils
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from base_move.turn_degree import turn_degree
|
||||
from base_move.turn_degree import turn_degree, turn_degree_v2
|
||||
from base_move.go_to_xy import go_straight
|
||||
from base_move.move_base_hori_line import arc_turn_around_hori_line, align_to_horizontal_line
|
||||
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
|
||||
|
||||
@ -14,6 +15,8 @@ observe = True
|
||||
def run_task_2_5(Ctrl, msg, direction='left'):
|
||||
section('任务2.5:预备进入任务3', "启动")
|
||||
|
||||
go_straight(Ctrl, msg, distance=-0.1, speed=0.5, observe=observe)
|
||||
|
||||
# TEST
|
||||
turn_degree(Ctrl, msg, 90, absolute=observe)
|
||||
|
||||
@ -28,9 +31,11 @@ def run_task_2_5(Ctrl, msg, direction='left'):
|
||||
observe=observe,
|
||||
)
|
||||
|
||||
go_straight(Ctrl, msg, distance=0.2, speed=0.5, observe=observe)
|
||||
|
||||
section('任务2.5-2:第二次旋转', "移动")
|
||||
|
||||
turn_degree(Ctrl, msg, degree=90, absolute=True)
|
||||
turn_degree_v2(Ctrl, msg, degree=90, absolute=True)
|
||||
|
||||
# arc_turn_around_hori_line(
|
||||
# Ctrl,
|
||||
|
Loading…
x
Reference in New Issue
Block a user