feat: 更新任务3和任务4,整合上下坡和通过栅栏的功能,优化视觉检测和移动控制逻辑
This commit is contained in:
parent
1ce8266c62
commit
b23526ff9d
776
task_3/task_3.py
776
task_3/task_3.py
@ -27,309 +27,62 @@ logger = get_logger("任务3")
|
||||
|
||||
observe = True
|
||||
|
||||
robot_cmd = {
|
||||
'mode':0, 'gait_id':0, 'contact':0, 'life_count':0,
|
||||
'vel_des':[0.0, 0.0, 0.0],
|
||||
'rpy_des':[0.0, 0.0, 0.0],
|
||||
'pos_des':[0.0, 0.0, 0.0],
|
||||
'acc_des':[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
'ctrl_point':[0.0, 0.0, 0.0],
|
||||
'foot_pose':[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
'step_height':[0.0, 0.0],
|
||||
'value':0, 'duration':0
|
||||
}
|
||||
YELLOW_RATIO_THRESHOLD = 0.15 # TODO 黄色区域比例阈值
|
||||
|
||||
|
||||
def pass_up_down(ctrl, msg):
|
||||
usergait_msg = file_send_lcmt()
|
||||
# lcm_usergait = lcm.LCM("udpm://239.255.76.67:7671?ttl=255")
|
||||
|
||||
try:
|
||||
steps = toml.load("./task_3/Gait_Params_up.toml")
|
||||
full_steps = {'step':[robot_cmd]}
|
||||
k =0
|
||||
for i in steps['step']:
|
||||
cmd = copy.deepcopy(robot_cmd)
|
||||
cmd['duration'] = i['duration']
|
||||
if i['type'] == 'usergait':
|
||||
cmd['mode'] = 11 # LOCOMOTION
|
||||
cmd['gait_id'] = 110 # USERGAIT
|
||||
cmd['vel_des'] = i['body_vel_des']
|
||||
cmd['rpy_des'] = i['body_pos_des'][0:3]
|
||||
cmd['pos_des'] = i['body_pos_des'][3:6]
|
||||
cmd['foot_pose'][0:2] = i['landing_pos_des'][0:2]
|
||||
cmd['foot_pose'][2:4] = i['landing_pos_des'][3:5]
|
||||
cmd['foot_pose'][4:6] = i['landing_pos_des'][6:8]
|
||||
cmd['ctrl_point'][0:2] = i['landing_pos_des'][9:11]
|
||||
cmd['step_height'][0] = math.ceil(i['step_height'][0] * 1e3) + math.ceil(i['step_height'][1] * 1e3) * 1e3
|
||||
cmd['step_height'][1] = math.ceil(i['step_height'][2] * 1e3) + math.ceil(i['step_height'][3] * 1e3) * 1e3
|
||||
cmd['acc_des'] = i['weight']
|
||||
cmd['value'] = i['use_mpc_traj']
|
||||
cmd['contact'] = math.floor(i['landing_gain'] * 1e1)
|
||||
cmd['ctrl_point'][2] = i['mu']
|
||||
if k == 0:
|
||||
full_steps['step'] = [cmd]
|
||||
else:
|
||||
full_steps['step'].append(cmd)
|
||||
k=k+1
|
||||
f = open("./task_3/Gait_Params_up_full.toml", 'w')
|
||||
f.write("# Gait Params\n")
|
||||
f.writelines(toml.dumps(full_steps))
|
||||
f.close()
|
||||
|
||||
# pre
|
||||
file_obj_gait_def = open("./task_3/Gait_Def_up.toml",'r')
|
||||
file_obj_gait_params = open("./task_3/Gait_Params_up_full.toml",'r')
|
||||
usergait_msg.data = file_obj_gait_def.read()
|
||||
ctrl.lc_s.publish("user_gait_file", usergait_msg.encode())
|
||||
time.sleep(0.5)
|
||||
usergait_msg.data = file_obj_gait_params.read()
|
||||
ctrl.lc_s.publish("user_gait_file", usergait_msg.encode())
|
||||
time.sleep(0.1)
|
||||
file_obj_gait_def.close()
|
||||
file_obj_gait_params.close()
|
||||
|
||||
msg.mode = 62
|
||||
msg.value = 0
|
||||
msg.contact = 15
|
||||
msg.gait_id = 110
|
||||
msg.duration = 1000
|
||||
msg.life_count += 1
|
||||
|
||||
# 参数设置
|
||||
stable_count = 0 # 用于计数z轴稳定的次数
|
||||
stable_threshold = 8 # 连续15次检测z轴不再增加则认为已经停止
|
||||
z_speed_threshold = 0.01 # z轴速度阈值,小于这个值认为已经停止爬升
|
||||
climb_speed_threshold = 0.05 # 检测到开始爬坡的速度阈值
|
||||
max_iterations = 230 # 最大循环次数,作为安全保障
|
||||
min_iterations = 170 # 最小循环次数,作为安全保障
|
||||
|
||||
# 姿态判断参数
|
||||
pitch_threshold = 0.05 # 俯仰角阈值(弧度)
|
||||
angular_rate_threshold = 0.03 # 角速度阈值(弧度/秒)
|
||||
|
||||
# 阶段控制
|
||||
climbing_detected = False # 是否检测到正在爬坡
|
||||
|
||||
# 高度变化记录
|
||||
height_window = []
|
||||
pitch_window = []
|
||||
window_size = 8
|
||||
|
||||
# 记录起始姿态和高度
|
||||
start_height = ctrl.odo_msg.xyz[2]
|
||||
info(f"开始监测爬坡过程,初始高度: {start_height:.3f}", "监测")
|
||||
|
||||
for i in range(max_iterations):
|
||||
# 发送控制命令维持心跳
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
# 获取当前状态数据
|
||||
vz = ctrl.odo_msg.vxyz[2] # Z轴速度
|
||||
current_height = ctrl.odo_msg.xyz[2] # 当前高度
|
||||
current_pitch = ctrl.odo_msg.rpy[1] # 当前俯仰角
|
||||
pitch_rate = ctrl.odo_msg.omegaBody[1] # 俯仰角速度
|
||||
vbody_z = ctrl.odo_msg.vBody[2] # 机体坐标系Z速度
|
||||
|
||||
# 更新滑动窗口数据
|
||||
height_window.append(current_height)
|
||||
pitch_window.append(current_pitch)
|
||||
if len(height_window) > window_size:
|
||||
height_window.pop(0)
|
||||
pitch_window.pop(0)
|
||||
|
||||
# 每10次迭代打印一次当前信息
|
||||
if i % 10 == 0:
|
||||
info(f"Step:{i} 当前Z轴速度={vz:.3f}, 当前高度={current_height:.3f}, 俯仰角={current_pitch:.3f}, 角速度={pitch_rate:.3f}", "监测")
|
||||
|
||||
# 检测是否开始爬坡阶段
|
||||
if not climbing_detected and vz > climb_speed_threshold:
|
||||
climbing_detected = True
|
||||
info(f"检测到开始爬坡,Z轴速度: {vz:.3f}, 当前高度: {current_height:.3f}, 俯仰角: {current_pitch:.3f}", "监测")
|
||||
|
||||
# 多条件判断是否完成爬坡
|
||||
if i > min_iterations and climbing_detected and len(height_window) == window_size:
|
||||
# 计算高度和俯仰角的稳定性
|
||||
height_std = np.std(height_window) # 高度标准差
|
||||
pitch_std = np.std(pitch_window) # 俯仰角标准差
|
||||
|
||||
# 多条件综合判断
|
||||
position_stable = abs(vz) < z_speed_threshold # 垂直速度稳定
|
||||
attitude_stable = abs(current_pitch) < pitch_threshold # 俯仰角接近水平
|
||||
angular_rate_stable = abs(pitch_rate) < angular_rate_threshold # 角速度稳定
|
||||
height_stable = height_std < 0.01 # 高度变化小
|
||||
pitch_stable = pitch_std < 0.01 # 俯仰角变化小
|
||||
vbody_stable = abs(vbody_z) < 0.01 # 机体Z方向速度稳定
|
||||
|
||||
# 综合判断条件
|
||||
if (position_stable and attitude_stable and angular_rate_stable) or \
|
||||
(position_stable and height_stable and pitch_stable) or \
|
||||
(vbody_stable and attitude_stable and height_stable):
|
||||
stable_count += 1
|
||||
if stable_count >= stable_threshold:
|
||||
info(f"检测到已完成爬坡:\n - Z轴速度: {vz:.3f}\n - 俯仰角: {current_pitch:.3f}\n - 角速度: {pitch_rate:.3f}\n - 当前高度: {current_height:.3f}\n - 上升了: {current_height - start_height:.3f}米", "监测")
|
||||
break
|
||||
else:
|
||||
# 重置稳定计数
|
||||
stable_count = 0
|
||||
|
||||
time.sleep(0.2)
|
||||
except KeyboardInterrupt:
|
||||
msg.mode = 7 #PureDamper before KeyboardInterrupt:
|
||||
msg.gait_id = 0
|
||||
msg.duration = 0
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
pass
|
||||
|
||||
section('任务3-2:x = 2', "开始")
|
||||
def run_task_3(ctrl, msg, time_sleep=5000):
|
||||
section('任务3:上下坡', "启动")
|
||||
info('开始执行任务3...', "启动")
|
||||
turn_degree_v2(ctrl, msg, 90, absolute=True)
|
||||
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False, detect_height=0.3)
|
||||
go_straight(ctrl, msg, distance=0.5, speed=0.5, observe=True)
|
||||
time.sleep(1)
|
||||
|
||||
section('任务3-3:down', "完成")
|
||||
try:
|
||||
steps = toml.load("./task_3/Gait_Params_down.toml")
|
||||
full_steps = {'step':[robot_cmd]}
|
||||
k = 0
|
||||
for i in steps['step']:
|
||||
cmd = copy.deepcopy(robot_cmd)
|
||||
cmd['duration'] = i['duration']
|
||||
if i['type'] == 'usergait':
|
||||
cmd['mode'] = 11 # LOCOMOTION
|
||||
cmd['gait_id'] = 110 # USERGAIT
|
||||
cmd['vel_des'] = i['body_vel_des']
|
||||
cmd['rpy_des'] = i['body_pos_des'][0:3]
|
||||
cmd['pos_des'] = i['body_pos_des'][3:6]
|
||||
cmd['foot_pose'][0:2] = i['landing_pos_des'][0:2]
|
||||
cmd['foot_pose'][2:4] = i['landing_pos_des'][3:5]
|
||||
cmd['foot_pose'][4:6] = i['landing_pos_des'][6:8]
|
||||
cmd['ctrl_point'][0:2] = i['landing_pos_des'][9:11]
|
||||
cmd['step_height'][0] = math.ceil(i['step_height'][0] * 1e3) + math.ceil(i['step_height'][1] * 1e3) * 1e3
|
||||
cmd['step_height'][1] = math.ceil(i['step_height'][2] * 1e3) + math.ceil(i['step_height'][3] * 1e3) * 1e3
|
||||
cmd['acc_des'] = i['weight']
|
||||
cmd['value'] = i['use_mpc_traj']
|
||||
cmd['contact'] = math.floor(i['landing_gain'] * 1e1)
|
||||
cmd['ctrl_point'][2] = i['mu']
|
||||
if k == 0:
|
||||
full_steps['step'] = [cmd]
|
||||
else:
|
||||
full_steps['step'].append(cmd)
|
||||
k=k+1
|
||||
f = open("./task_3/Gait_Params_down_full.toml", 'w')
|
||||
f.write("# Gait Params\n")
|
||||
f.writelines(toml.dumps(full_steps))
|
||||
f.close()
|
||||
section('任务3-1:up and down', "开始")
|
||||
go_straight_with_enhanced_calibration(ctrl, msg, distance = 5, speed=0.5, observe=False, mode=11, gait_id=3, step_height=[0.21, 0.21])
|
||||
# pass_up_down(ctrl, msg)
|
||||
|
||||
# pre
|
||||
file_obj_gait_def = open("./task_3/Gait_Def_up.toml",'r')
|
||||
file_obj_gait_params = open("./task_3/Gait_Params_down_full.toml",'r')
|
||||
usergait_msg.data = file_obj_gait_def.read()
|
||||
ctrl.lc_s.publish("user_gait_file", usergait_msg.encode())
|
||||
time.sleep(0.5)
|
||||
usergait_msg.data = file_obj_gait_params.read()
|
||||
ctrl.lc_s.publish("user_gait_file", usergait_msg.encode())
|
||||
time.sleep(0.1)
|
||||
file_obj_gait_def.close()
|
||||
file_obj_gait_params.close()
|
||||
turn_degree_v2(ctrl, msg, 90, absolute=True)
|
||||
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False)
|
||||
|
||||
msg.mode = 62
|
||||
msg.value = 0
|
||||
msg.contact = 15
|
||||
msg.gait_id = 110
|
||||
msg.duration = 1000
|
||||
msg.life_count += 1
|
||||
section('任务3-2:yellow stop', "开始")
|
||||
go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=YELLOW_RATIO_THRESHOLD, speed=0.3)
|
||||
|
||||
# 参数设置
|
||||
stable_count = 0 # 用于计数z轴稳定的次数
|
||||
stable_threshold = 10 # 连续10次检测z轴速度接近零则认为已经到达平地
|
||||
z_speed_threshold = 0.005 # z轴速度阈值,小于这个值认为已经停止下降
|
||||
descent_speed_threshold = -0.05 # 检测到开始下坡的速度阈值(负值表示下降)
|
||||
max_iterations = 110 # 最大循环次数,作为安全保障
|
||||
min_iterations = 80 # 最小循环次数,确保有足够的时间开始动作
|
||||
start_height = ctrl.odo_msg.xyz[2] # 记录起始高度
|
||||
|
||||
# 姿态判断参数
|
||||
pitch_threshold = 0.05 # 俯仰角阈值(弧度)
|
||||
angular_rate_threshold = 0.03 # 角速度阈值(弧度/秒)
|
||||
|
||||
# 阶段控制
|
||||
descending_detected = False # 是否检测到正在下坡
|
||||
flat_ground_detected = False # 是否检测到已到达平地
|
||||
|
||||
# 高度变化记录
|
||||
height_window = []
|
||||
pitch_window = []
|
||||
window_size = 8
|
||||
|
||||
info(f"开始监测下坡过程,初始高度: {start_height}", "监测")
|
||||
|
||||
for i in range(max_iterations):
|
||||
# 发送控制命令维持心跳
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
# 获取当前状态数据
|
||||
vz = ctrl.odo_msg.vxyz[2] # Z轴速度
|
||||
current_height = ctrl.odo_msg.xyz[2] # 当前高度
|
||||
current_pitch = ctrl.odo_msg.rpy[1] # 当前俯仰角
|
||||
pitch_rate = ctrl.odo_msg.omegaBody[1] # 俯仰角速度
|
||||
vbody_z = ctrl.odo_msg.vBody[2] # 机体坐标系Z速度
|
||||
|
||||
# 更新滑动窗口数据
|
||||
height_window.append(current_height)
|
||||
pitch_window.append(current_pitch)
|
||||
if len(height_window) > window_size:
|
||||
height_window.pop(0)
|
||||
pitch_window.pop(0)
|
||||
|
||||
# 每10次迭代打印一次当前信息
|
||||
if observe and i % 10 == 0:
|
||||
info(f"Step:{i} 当前Z轴速度={vz:.3f}, 当前高度={current_height:.3f}, 俯仰角={current_pitch:.3f}, 角速度={pitch_rate:.3f}", "监测")
|
||||
|
||||
# 检测是否开始下坡阶段
|
||||
if not descending_detected and vz < descent_speed_threshold:
|
||||
descending_detected = True
|
||||
info(f"检测到开始下坡,Z轴速度: {vz:.3f}, 当前高度: {current_height:.3f}, 俯仰角: {current_pitch:.3f}", "监测")
|
||||
|
||||
# 多条件判断是否到达平地
|
||||
if i > min_iterations and descending_detected and len(height_window) == window_size:
|
||||
# 计算高度和俯仰角的稳定性
|
||||
height_std = np.std(height_window) # 高度标准差
|
||||
pitch_std = np.std(pitch_window) # 俯仰角标准差
|
||||
|
||||
# 多条件综合判断
|
||||
position_stable = abs(vz) < z_speed_threshold # 垂直速度稳定
|
||||
attitude_stable = abs(current_pitch) < pitch_threshold # 俯仰角接近水平
|
||||
angular_rate_stable = abs(pitch_rate) < angular_rate_threshold # 角速度稳定
|
||||
height_stable = height_std < 0.01 # 高度变化小
|
||||
pitch_stable = pitch_std < 0.01 # 俯仰角变化小
|
||||
vbody_stable = abs(vbody_z) < 0.01 # 机体Z方向速度稳定
|
||||
|
||||
# 综合判断条件
|
||||
if (position_stable and attitude_stable and angular_rate_stable) or \
|
||||
(position_stable and height_stable and pitch_stable) or \
|
||||
(vbody_stable and attitude_stable and height_stable):
|
||||
stable_count += 1
|
||||
if stable_count >= stable_threshold:
|
||||
info(f"检测到已到达平地:\n - Z轴速度: {vz:.3f}\n - 俯仰角: {current_pitch:.3f}\n - 角速度: {pitch_rate:.3f}\n - 高度: {current_height:.3f}\n - 下降了: {start_height - current_height:.3f}米", "监测")
|
||||
flat_ground_detected = True
|
||||
break
|
||||
else:
|
||||
# 重置稳定计数
|
||||
stable_count = 0
|
||||
|
||||
time.sleep(0.2)
|
||||
|
||||
if not flat_ground_detected:
|
||||
info(f"达到最大循环次数,未能明确检测到到达平地。当前高度: {ctrl.odo_msg.xyz[2]:.3f}", "警告")
|
||||
except KeyboardInterrupt:
|
||||
msg.mode = 7 #PureDamper before KeyboardInterrupt:
|
||||
# 原地站立3秒
|
||||
section("原地站立3秒", "站立")
|
||||
msg.mode = 12
|
||||
msg.gait_id = 0
|
||||
msg.duration = 0
|
||||
msg.step_height = [0.06, 0.06]
|
||||
msg.vel_des = [0, 0, 0]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
pass
|
||||
|
||||
info("开始原地站立3秒", "站立")
|
||||
time.sleep(time_sleep / 1000)
|
||||
info("完成原地站立", "站立")
|
||||
|
||||
|
||||
def run_task_3_back(ctrl, msg, time_sleep=5000):
|
||||
section('任务3-1:up', "开始")
|
||||
section('任务3-2:yellow stop', "开始")
|
||||
go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=YELLOW_RATIO_THRESHOLD, speed=0.3)
|
||||
|
||||
# 原地站立3秒
|
||||
section("原地站立3秒", "站立")
|
||||
msg.mode = 12
|
||||
msg.gait_id = 0
|
||||
msg.duration = 0
|
||||
msg.step_height = [0.06, 0.06]
|
||||
msg.vel_des = [0, 0, 0]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
info("开始原地站立3秒", "站立")
|
||||
time.sleep(time_sleep / 1000)
|
||||
info("完成原地站立", "站立")
|
||||
|
||||
section('任务3-3:up and down', "开始")
|
||||
go_straight_with_enhanced_calibration(ctrl, msg, distance = 5, speed=0.5, observe=False, mode=11, gait_id=3, step_height=[0.21, 0.21])
|
||||
|
||||
# TODO 调优达到一个合适的位置,准备 task 2-5 的返回
|
||||
# 或许用到 move-to-line 函数
|
||||
|
||||
|
||||
def go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3, max_time=30, observe=True):
|
||||
@ -387,7 +140,7 @@ def go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3, max_
|
||||
# 定期发送移动命令保持移动状态
|
||||
if current_time - last_check_time >= check_interval:
|
||||
# 获取当前图像并保存到临时文件
|
||||
current_image = ctrl.image_processor.get_current_image()
|
||||
current_image = ctrl.image_processor.get_current_image('ai') # INFO 默认采用 ai 相机
|
||||
|
||||
# 创建临时文件保存图像
|
||||
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
|
||||
@ -490,35 +243,426 @@ def go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3, max_
|
||||
return False
|
||||
|
||||
|
||||
def run_task_3(ctrl, msg, time_sleep=5000):
|
||||
section('任务3:上下坡', "启动")
|
||||
info('开始执行任务3...', "启动")
|
||||
def go_straight_with_enhanced_calibration(ctrl, msg, distance, speed=0.5, observe=False,
|
||||
mode=11, gait_id=3, step_height=[0.21, 0.21]):
|
||||
"""
|
||||
控制机器人在石板路上沿直线行走,使用视觉校准和姿态传感器融合来保持直线
|
||||
|
||||
turn_degree_v2(ctrl, msg, 90, absolute=True)
|
||||
参数:
|
||||
ctrl: Robot_Ctrl 对象
|
||||
msg: 控制消息对象
|
||||
distance: 要行走的距离(米)
|
||||
speed: 行走速度(米/秒)
|
||||
observe: 是否输出调试信息
|
||||
mode: 运动模式
|
||||
gait_id: 步态ID
|
||||
step_height: 摆动腿高度
|
||||
|
||||
section('任务3-1:up', "开始")
|
||||
pass_up_down(ctrl, msg)
|
||||
返回:
|
||||
bool: 是否成功完成
|
||||
"""
|
||||
section("开始石板路增强直线移动", "石板路移动")
|
||||
|
||||
turn_degree_v2(ctrl, msg, 90, absolute=True)
|
||||
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False)
|
||||
# 参数验证
|
||||
if abs(distance) < 0.01:
|
||||
info("距离太短,无需移动", "信息")
|
||||
return True
|
||||
|
||||
section('任务3-2:yellow stop', "开始")
|
||||
go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3)
|
||||
# 检查相机是否可用
|
||||
if not hasattr(ctrl, 'image_processor') or not hasattr(ctrl.image_processor, 'get_current_image'):
|
||||
warning("机器人控制器没有提供图像处理器,将使用姿态传感器辅助校准", "警告")
|
||||
|
||||
# 原地站立3秒
|
||||
section("原地站立3秒", "站立")
|
||||
msg.mode = 12
|
||||
msg.gait_id = 0
|
||||
msg.duration = 0
|
||||
msg.step_height = [0.06, 0.06]
|
||||
msg.vel_des = [0, 0, 0]
|
||||
# 限制速度范围
|
||||
speed = min(max(abs(speed), 0.1), 1.0)
|
||||
|
||||
# 确定前进或后退方向
|
||||
forward = distance > 0
|
||||
move_speed = speed if forward else -speed
|
||||
abs_distance = abs(distance)
|
||||
|
||||
# 获取起始位置和姿态
|
||||
start_position = list(ctrl.odo_msg.xyz)
|
||||
start_yaw = ctrl.odo_msg.rpy[2] # 记录起始朝向
|
||||
|
||||
if observe:
|
||||
debug(f"起始位置: {start_position}", "位置")
|
||||
info(f"开始石板路增强直线移动,距离: {abs_distance:.3f}米,速度: {abs(move_speed):.2f}米/秒", "移动")
|
||||
|
||||
# 设置移动命令
|
||||
msg.mode = mode
|
||||
msg.gait_id = gait_id
|
||||
msg.step_height = step_height
|
||||
msg.duration = 0 # wait next cmd
|
||||
|
||||
# 根据需要移动的距离动态调整移动速度
|
||||
if abs_distance > 1.0:
|
||||
actual_speed = move_speed # 距离较远时用设定速度
|
||||
else:
|
||||
actual_speed = move_speed * 0.8 # 较近距离略微降速
|
||||
|
||||
# 设置移动速度和方向
|
||||
msg.vel_des = [actual_speed, 0, 0] # [前进速度, 侧向速度, 角速度]
|
||||
msg.life_count += 1
|
||||
|
||||
# 发送命令
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
# 估算移动时间,但实际上会通过里程计控制
|
||||
estimated_time = abs_distance / abs(actual_speed)
|
||||
timeout = estimated_time + 5 # 增加超时时间
|
||||
|
||||
# 使用里程计进行实时监控移动距离
|
||||
distance_moved = 0
|
||||
start_time = time.time()
|
||||
last_check_time = start_time
|
||||
position_check_interval = 0.1 # 位置检查间隔(秒)
|
||||
|
||||
# 计算移动方向单位向量(世界坐标系下)
|
||||
direction_vector = [math.cos(start_yaw), math.sin(start_yaw)]
|
||||
if not forward:
|
||||
direction_vector = [-direction_vector[0], -direction_vector[1]]
|
||||
|
||||
# 视觉跟踪相关变量
|
||||
vision_check_interval = 0.2 # 视觉检查间隔(秒)
|
||||
last_vision_check = start_time
|
||||
vision_correction_gain = 0.006 # 视觉修正增益系数
|
||||
|
||||
# 用于滤波的队列
|
||||
deviation_queue = []
|
||||
filter_size = 5
|
||||
last_valid_deviation = 0
|
||||
|
||||
# PID控制参数 - 用于角度修正
|
||||
kp_angle = 0.6 # 比例系数
|
||||
ki_angle = 0.02 # 积分系数
|
||||
kd_angle = 0.1 # 微分系数
|
||||
|
||||
# PID控制变量
|
||||
angle_error_integral = 0
|
||||
last_angle_error = 0
|
||||
|
||||
# 偏移量累计 - 用于检测持续偏移
|
||||
y_offset_accumulator = 0
|
||||
|
||||
# 动态调整参数
|
||||
slow_down_ratio = 0.85 # 当移动到目标距离的85%时开始减速
|
||||
completion_threshold = 0.95 # 当移动到目标距离的95%时停止
|
||||
|
||||
# 监控移动过程
|
||||
while distance_moved < abs_distance * completion_threshold and time.time() - start_time < timeout:
|
||||
current_time = time.time()
|
||||
|
||||
# 按固定间隔检查位置
|
||||
if current_time - last_check_time >= position_check_interval:
|
||||
# 获取当前位置和朝向
|
||||
current_position = ctrl.odo_msg.xyz
|
||||
current_yaw = ctrl.odo_msg.rpy[2]
|
||||
|
||||
# 计算在移动方向上的位移
|
||||
dx = current_position[0] - start_position[0]
|
||||
dy = current_position[1] - start_position[1]
|
||||
|
||||
# 计算在初始方向上的投影距离(实际前进距离)
|
||||
distance_moved = dx * direction_vector[0] + dy * direction_vector[1]
|
||||
distance_moved = abs(distance_moved) # 确保距离为正值
|
||||
|
||||
# 计算垂直于移动方向的偏移量(y方向偏移)
|
||||
y_offset = -dx * direction_vector[1] + dy * direction_vector[0]
|
||||
|
||||
# 累积y方向偏移量,检测持续偏移趋势
|
||||
y_offset_accumulator = y_offset_accumulator * 0.8 + y_offset * 0.2
|
||||
|
||||
# 根据前进或后退确定期望方向
|
||||
expected_direction = start_yaw if forward else (start_yaw + math.pi) % (2 * math.pi)
|
||||
|
||||
# 使用IMU朝向数据计算角度偏差
|
||||
yaw_error = current_yaw - expected_direction
|
||||
# 角度归一化
|
||||
while yaw_error > math.pi:
|
||||
yaw_error -= 2 * math.pi
|
||||
while yaw_error < -math.pi:
|
||||
yaw_error += 2 * math.pi
|
||||
|
||||
# 使用PID控制计算角速度修正
|
||||
# 比例项
|
||||
p_control = kp_angle * yaw_error
|
||||
|
||||
# 积分项 (带衰减)
|
||||
angle_error_integral = angle_error_integral * 0.9 + yaw_error
|
||||
angle_error_integral = max(-1.0, min(1.0, angle_error_integral)) # 限制积分范围
|
||||
i_control = ki_angle * angle_error_integral
|
||||
|
||||
# 微分项
|
||||
d_control = kd_angle * (yaw_error - last_angle_error)
|
||||
last_angle_error = yaw_error
|
||||
|
||||
# 计算总的角速度控制量
|
||||
angular_correction = -(p_control + i_control + d_control)
|
||||
# 限制最大角速度修正
|
||||
angular_correction = max(min(angular_correction, 0.3), -0.3)
|
||||
|
||||
# 根据持续的y偏移趋势增加侧向校正
|
||||
lateral_correction = 0
|
||||
if abs(y_offset_accumulator) > 0.05: # 如果累积偏移超过5厘米
|
||||
lateral_correction = -y_offset_accumulator * 0.8 # 反向校正
|
||||
lateral_correction = max(min(lateral_correction, 0.15), -0.15) # 限制最大侧向速度
|
||||
|
||||
if observe and abs(lateral_correction) > 0.05:
|
||||
warning(f"累积Y偏移校正: {y_offset_accumulator:.3f}米,应用侧向速度 {lateral_correction:.3f}m/s", "偏移")
|
||||
|
||||
# 计算完成比例
|
||||
completion_ratio = distance_moved / abs_distance
|
||||
|
||||
# 根据距离完成情况调整速度
|
||||
if completion_ratio > slow_down_ratio:
|
||||
# 计算减速系数
|
||||
slow_factor = 1.0 - (completion_ratio - slow_down_ratio) / (1.0 - slow_down_ratio)
|
||||
# 确保不会减速太多
|
||||
slow_factor = max(0.3, slow_factor)
|
||||
new_speed = actual_speed * slow_factor
|
||||
|
||||
if observe and abs(new_speed - msg.vel_des[0]) > 0.05:
|
||||
info(f"减速: {msg.vel_des[0]:.2f} -> {new_speed:.2f} 米/秒 (完成: {completion_ratio*100:.1f}%)", "移动")
|
||||
|
||||
actual_speed = new_speed
|
||||
|
||||
# 应用修正 - 同时应用角速度和侧向速度修正
|
||||
msg.vel_des = [actual_speed, lateral_correction, angular_correction]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
info("开始原地站立3秒", "站立")
|
||||
time.sleep(time_sleep / 1000)
|
||||
info("完成原地站立", "站立")
|
||||
if observe and current_time % 1.0 < position_check_interval:
|
||||
debug(f"已移动: {distance_moved:.3f}米, 目标: {abs_distance:.3f}米 (完成: {completion_ratio*100:.1f}%)", "距离")
|
||||
debug(f"Y偏移: {y_offset:.3f}米, 累积偏移: {y_offset_accumulator:.3f}米", "偏移")
|
||||
debug(f"朝向偏差: {math.degrees(yaw_error):.1f}度, 角速度修正: {angular_correction:.3f}rad/s", "角度")
|
||||
debug(f"PID: P={p_control:.3f}, I={i_control:.3f}, D={d_control:.3f}", "控制")
|
||||
|
||||
# 更新检查时间
|
||||
last_check_time = current_time
|
||||
|
||||
# 定期进行视觉检查和修正 # TODO 这个函数如果用于 上下坡的话,感觉或许就不需要了,如果能保证 task 2-5 的效果。
|
||||
if hasattr(ctrl, 'image_processor') and current_time - last_vision_check >= vision_check_interval:
|
||||
try:
|
||||
# 获取当前相机帧
|
||||
frame = ctrl.image_processor.get_current_image()
|
||||
if frame is not None:
|
||||
# 检测轨道线 - 使用特定的石板路模式
|
||||
center_info, _, _ = detect_dual_track_lines(
|
||||
frame, observe=False, save_log=False)
|
||||
|
||||
# 如果成功检测到轨道线,使用它进行修正
|
||||
if center_info is not None:
|
||||
# 获取当前偏差
|
||||
current_deviation = center_info["deviation"]
|
||||
last_valid_deviation = current_deviation
|
||||
|
||||
# 添加到队列进行滤波
|
||||
deviation_queue.append(current_deviation)
|
||||
if len(deviation_queue) > filter_size:
|
||||
deviation_queue.pop(0)
|
||||
|
||||
# 计算滤波后的偏差值 (去除最大和最小值后的平均)
|
||||
if len(deviation_queue) >= 3:
|
||||
filtered_deviations = sorted(deviation_queue)[1:-1] if len(deviation_queue) > 2 else deviation_queue
|
||||
filtered_deviation = sum(filtered_deviations) / len(filtered_deviations)
|
||||
else:
|
||||
filtered_deviation = current_deviation
|
||||
|
||||
# 计算视觉侧向修正速度
|
||||
vision_lateral_correction = -filtered_deviation * vision_correction_gain
|
||||
# 限制最大侧向速度修正
|
||||
vision_lateral_correction = max(min(vision_lateral_correction, 0.2), -0.2)
|
||||
|
||||
# 与当前的侧向校正进行融合 (加权平均)
|
||||
if msg.vel_des[1] != 0:
|
||||
# 如果已经有侧向校正,与视觉校正进行融合
|
||||
fused_lateral = msg.vel_des[1] * 0.3 + vision_lateral_correction * 0.7
|
||||
else:
|
||||
# 如果没有侧向校正,直接使用视觉校正
|
||||
fused_lateral = vision_lateral_correction
|
||||
|
||||
if observe and abs(vision_lateral_correction) > 0.05:
|
||||
warning(f"视觉修正: 偏差 {filtered_deviation:.1f}像素,应用侧向速度 {vision_lateral_correction:.3f}m/s", "视觉")
|
||||
|
||||
# 应用视觉修正,保留当前前进速度和角速度
|
||||
msg.vel_des = [msg.vel_des[0], fused_lateral, msg.vel_des[2]]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
if observe and current_time % 1.0 < vision_check_interval:
|
||||
debug(f"视觉检测: 原始偏差 {current_deviation:.1f}像素, 滤波后 {filtered_deviation:.1f}像素", "视觉")
|
||||
debug(f"融合侧向速度: {fused_lateral:.3f}m/s", "视觉")
|
||||
except Exception as e:
|
||||
if observe:
|
||||
error(f"视觉检测异常: {e}", "错误")
|
||||
|
||||
# 更新视觉检查时间
|
||||
last_vision_check = current_time
|
||||
|
||||
# 短暂延时
|
||||
time.sleep(0.01)
|
||||
|
||||
# 平滑停止
|
||||
slowdown_steps = 5
|
||||
for i in range(slowdown_steps, 0, -1):
|
||||
slowdown_factor = i / slowdown_steps
|
||||
msg.vel_des = [actual_speed * slowdown_factor, 0, 0]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
time.sleep(0.1)
|
||||
|
||||
# 最后完全停止
|
||||
if hasattr(ctrl.base_msg, 'stop_smooth'):
|
||||
ctrl.base_msg.stop_smooth()
|
||||
else:
|
||||
ctrl.base_msg.stop()
|
||||
|
||||
# 获取最终位置和实际移动距离
|
||||
final_position = ctrl.odo_msg.xyz
|
||||
dx = final_position[0] - start_position[0]
|
||||
dy = final_position[1] - start_position[1]
|
||||
actual_distance = math.sqrt(dx*dx + dy*dy)
|
||||
|
||||
# 计算最终y方向偏移
|
||||
final_y_offset = -dx * direction_vector[1] + dy * direction_vector[0]
|
||||
|
||||
if observe:
|
||||
success(f"石板路增强直线移动完成,实际移动距离: {actual_distance:.3f}米", "完成")
|
||||
info(f"最终Y方向偏移: {final_y_offset:.3f}米", "偏移")
|
||||
|
||||
# 判断是否成功完成
|
||||
distance_error = abs(actual_distance - abs_distance)
|
||||
y_offset_error = abs(final_y_offset)
|
||||
|
||||
go_success = distance_error < 0.1 and y_offset_error < 0.1 # 距离误差和y偏移都小于10厘米视为成功
|
||||
|
||||
if observe:
|
||||
if go_success:
|
||||
success(f"移动成功", "成功")
|
||||
else:
|
||||
warning(f"移动不够精确,距离误差: {distance_error:.3f}米, Y偏移: {y_offset_error:.3f}米", "警告")
|
||||
|
||||
return go_success
|
||||
|
||||
|
||||
def run_task_3_back(ctrl, msg):
|
||||
return
|
||||
# INFO 保持文件相对路径,直接从 task-4中调用
|
||||
robot_cmd = {
|
||||
'mode':0, 'gait_id':0, 'contact':0, 'life_count':0,
|
||||
'vel_des':[0.0, 0.0, 0.0],
|
||||
'rpy_des':[0.0, 0.0, 0.0],
|
||||
'pos_des':[0.0, 0.0, 0.0],
|
||||
'acc_des':[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
'ctrl_point':[0.0, 0.0, 0.0],
|
||||
'foot_pose':[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
'step_height':[0.0, 0.0],
|
||||
'value':0, 'duration':0
|
||||
}
|
||||
|
||||
def pass_stone(ctrl, msg, distance=5.0, observe=True):
|
||||
"""
|
||||
通过里程计设定distance,执行上坡gait。
|
||||
:param ctrl: 控制器对象
|
||||
:param msg: 控制消息
|
||||
:param distance: 期望移动距离(米)
|
||||
:param observe: 是否打印过程信息
|
||||
"""
|
||||
usergait_msg = file_send_lcmt()
|
||||
try:
|
||||
# 1. 生成gait参数文件
|
||||
steps = toml.load("./task_3/Gait_Params_up.toml")
|
||||
full_steps = {'step':[robot_cmd]}
|
||||
k = 0
|
||||
for i in steps['step']:
|
||||
cmd = copy.deepcopy(robot_cmd)
|
||||
cmd['duration'] = i['duration']
|
||||
if i['type'] == 'usergait':
|
||||
cmd['mode'] = 11 # LOCOMOTION
|
||||
cmd['gait_id'] = 110 # USERGAIT
|
||||
cmd['vel_des'] = i['body_vel_des']
|
||||
cmd['rpy_des'] = i['body_pos_des'][0:3]
|
||||
cmd['pos_des'] = i['body_pos_des'][3:6]
|
||||
cmd['foot_pose'][0:2] = i['landing_pos_des'][0:2]
|
||||
cmd['foot_pose'][2:4] = i['landing_pos_des'][3:5]
|
||||
cmd['foot_pose'][4:6] = i['landing_pos_des'][6:8]
|
||||
cmd['ctrl_point'][0:2] = i['landing_pos_des'][9:11]
|
||||
cmd['step_height'][0] = math.ceil(i['step_height'][0] * 1e3) + math.ceil(i['step_height'][1] * 1e3) * 1e3
|
||||
cmd['step_height'][1] = math.ceil(i['step_height'][2] * 1e3) + math.ceil(i['step_height'][3] * 1e3) * 1e3
|
||||
cmd['acc_des'] = i['weight']
|
||||
cmd['value'] = i['use_mpc_traj']
|
||||
cmd['contact'] = math.floor(i['landing_gain'] * 1e1)
|
||||
cmd['ctrl_point'][2] = i['mu']
|
||||
if k == 0:
|
||||
full_steps['step'] = [cmd]
|
||||
else:
|
||||
full_steps['step'].append(cmd)
|
||||
k += 1
|
||||
with open("./task_3/Gait_Params_up_full.toml", 'w') as f:
|
||||
f.write("# Gait Params\n")
|
||||
f.writelines(toml.dumps(full_steps))
|
||||
|
||||
# 2. 发送gait定义和参数
|
||||
with open("./task_3/Gait_Def_up.toml",'r') as file_obj_gait_def, \
|
||||
open("./task_3/Gait_Params_up_full.toml",'r') as file_obj_gait_params:
|
||||
usergait_msg.data = file_obj_gait_def.read()
|
||||
ctrl.lc_s.publish("user_gait_file", usergait_msg.encode())
|
||||
time.sleep(0.5)
|
||||
usergait_msg.data = file_obj_gait_params.read()
|
||||
ctrl.lc_s.publish("user_gait_file", usergait_msg.encode())
|
||||
time.sleep(0.1)
|
||||
|
||||
# 3. 记录起始位置
|
||||
start_xyz = ctrl.odo_msg.xyz[:2] # 只取x, y
|
||||
if observe:
|
||||
info(f"pass_up_down: 期望移动距离 {distance:.3f} 米,起始位置: {start_xyz}", "监测")
|
||||
|
||||
# 4. 设置gait执行参数
|
||||
msg.mode = 62
|
||||
msg.value = 0
|
||||
msg.contact = 15
|
||||
msg.gait_id = 110
|
||||
msg.duration = 1000
|
||||
msg.life_count += 1
|
||||
|
||||
# 5. 控制循环,按里程计判断是否到达(去除max-iteration,直接while判断)
|
||||
arrived = False
|
||||
step = 0
|
||||
while True:
|
||||
ctrl.Send_cmd(msg)
|
||||
cur_xyz = ctrl.odo_msg.xyz[:2]
|
||||
dx = cur_xyz[0] - start_xyz[0]
|
||||
dy = cur_xyz[1] - start_xyz[1]
|
||||
moved = (dx**2 + dy**2) ** 0.5
|
||||
if observe and step % 10 == 0:
|
||||
info(f"Step:{step} 已移动距离={moved:.3f}m, 目标={distance:.3f}m, 当前xy={cur_xyz}", "监测")
|
||||
if moved >= distance:
|
||||
arrived = True
|
||||
if observe:
|
||||
success(f"pass_up_down: 已到达设定距离 {distance:.3f}m (实际: {moved:.3f}m)", "完成")
|
||||
break
|
||||
step += 1
|
||||
time.sleep(0.1)
|
||||
|
||||
# 6. 完全停止
|
||||
if hasattr(ctrl.base_msg, 'stop_smooth'):
|
||||
ctrl.base_msg.stop_smooth()
|
||||
else:
|
||||
ctrl.base_msg.stop()
|
||||
ctrl.Send_cmd(msg)
|
||||
time.sleep(0.1)
|
||||
|
||||
# 7. 反馈最终位置
|
||||
final_xyz = ctrl.odo_msg.xyz[:2]
|
||||
dx = final_xyz[0] - start_xyz[0]
|
||||
dy = final_xyz[1] - start_xyz[1]
|
||||
actual_distance = (dx**2 + dy**2) ** 0.5
|
||||
if observe:
|
||||
info(f"pass_up_down: 最终位置 {final_xyz}, 实际移动距离 {actual_distance:.3f}m", "监测")
|
||||
return arrived
|
||||
|
||||
except KeyboardInterrupt:
|
||||
msg.mode = 7 #PureDamper before KeyboardInterrupt:
|
||||
msg.gait_id = 0
|
||||
msg.duration = 0
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
pass
|
||||
@ -35,7 +35,8 @@ robot_cmd = {
|
||||
|
||||
def pass_bar(ctrl, msg):
|
||||
"""
|
||||
俯身通过一个栅栏
|
||||
俯身通过一个栅栏;
|
||||
会默认前进一定的距离。
|
||||
"""
|
||||
step_num = 8
|
||||
|
||||
|
||||
387
task_4/task_4.py
387
task_4/task_4.py
@ -17,25 +17,22 @@ from utils.detect_dual_track_lines import detect_dual_track_lines
|
||||
from base_move.move_base_hori_line import calculate_distance_to_line
|
||||
from task_4.pass_bar import pass_bar
|
||||
from base_move.center_on_dual_tracks import center_on_dual_tracks
|
||||
from task_3.task_3 import pass_stone
|
||||
|
||||
# 创建本模块特定的日志记录器
|
||||
logger = get_logger("任务4")
|
||||
|
||||
observe = True
|
||||
|
||||
STONE_DISTANCE = 5.0 # TODO 距离参数需要微调
|
||||
RED_RATIO_THRESHOLD = 0.35 # TODO 红色区域比例阈值需要微调
|
||||
|
||||
def run_task_4(ctrl, msg):
|
||||
section('任务4-1:直线移动', "移动")
|
||||
# 设置机器人运动模式为快步跑
|
||||
msg.mode = 11 # 运动模式
|
||||
msg.gait_id = 3 # 步态ID(快步跑)
|
||||
msg.vel_des = [0.35, 0, 0] # 期望速度
|
||||
msg.pos_des = [ 0, 0, 0]
|
||||
msg.duration = 0 # 零时长表示持续运动,直到接收到新命令
|
||||
msg.step_height = [0.21, 0.21] # 持续运动时摆动腿的离地高度
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
time.sleep(5) # 持续5秒钟
|
||||
pass_stone(ctrl, msg, distance=STONE_DISTANCE)
|
||||
|
||||
section('任务4-2:移动直到灰色天空比例小于阈值', "天空检测")
|
||||
go_straight_until_sky_ratio_below(ctrl, msg, sky_ratio_threshold=0.2)
|
||||
section('任务4-2:移动直到红色区域比例大于阈值', "红色检测")
|
||||
go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2)
|
||||
|
||||
section('任务4-3:通过栏杆', "移动")
|
||||
pass_bar(ctrl, msg)
|
||||
@ -53,14 +50,14 @@ def run_task_4_back(ctrl, msg):
|
||||
go_straight(ctrl, msg, distance=2, speed=1, observe=True)
|
||||
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False)
|
||||
|
||||
# 向右移动0.5秒
|
||||
section('任务4-回程:向右移动', "移动")
|
||||
go_lateral(ctrl, msg, distance=-0.1, speed=0.15, observe=True) # DEBUG
|
||||
# TODO 向右移动0.5秒 (或许不需要了)
|
||||
# section('任务4-回程:向右移动', "移动")
|
||||
# go_lateral(ctrl, msg, distance=-0.1, speed=0.15, observe=True) # DEBUG
|
||||
|
||||
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
|
||||
|
||||
section('任务4-1:移动直到灰色天空比例低于阈值', "天空检测")
|
||||
go_straight_until_sky_ratio_below(ctrl, msg, sky_ratio_threshold=0.35, speed=0.2)
|
||||
go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2)
|
||||
|
||||
section('任务4-2:通过栏杆', "移动")
|
||||
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
|
||||
@ -69,11 +66,11 @@ def run_task_4_back(ctrl, msg):
|
||||
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
|
||||
section('任务4-3:stone', "移动")
|
||||
go_straight(ctrl, msg, distance=1, speed=2)
|
||||
|
||||
turn_degree_v2(ctrl, msg, degree=-92, absolute=True)
|
||||
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
|
||||
|
||||
# Use enhanced calibration for better Y-axis correction on stone path
|
||||
go_straight(ctrl, msg, distance=4.5, speed=0.35, mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True)
|
||||
# go_straight(ctrl, msg, distance=4.5, speed=0.35, mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True)
|
||||
pass_stone(ctrl, msg, distance=STONE_DISTANCE)
|
||||
# go_straight_with_enhanced_calibration(ctrl, msg, distance=4.5, speed=0.35,
|
||||
# mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True)
|
||||
|
||||
@ -85,26 +82,47 @@ def run_task_4_back(ctrl, msg):
|
||||
current_distance = calculate_distance_to_line(edge_info, camera_height, observe=True)
|
||||
go_straight(ctrl, msg, distance=current_distance, speed=0.20, mode=11, gait_id=3, step_height=[0.21, 0.21])
|
||||
|
||||
def go_straight_until_sky_ratio_below(ctrl, msg,
|
||||
sky_ratio_threshold=0.2,
|
||||
def go_straight_until_red_bar(ctrl, msg,
|
||||
red_ratio_threshold=0.2,
|
||||
step_distance=0.5,
|
||||
max_distance=5,
|
||||
speed=0.3
|
||||
):
|
||||
"""
|
||||
控制机器人沿直线行走,直到灰色天空比例低于指定阈值
|
||||
控制机器人沿直线行走,直到红色区域比例高于指定阈值
|
||||
|
||||
参数:
|
||||
ctrl: Robot_Ctrl对象
|
||||
msg: 控制命令消息对象
|
||||
sky_ratio_threshold: 灰色天空比例阈值,当检测到的比例低于此值时停止
|
||||
red_ratio_threshold: 红色区域比例阈值,当检测到的比例高于此值时停止
|
||||
step_distance: 每次移动的步长(米)
|
||||
max_distance: 最大移动距离(米),防止无限前进
|
||||
speed: 移动速度(米/秒)
|
||||
|
||||
返回:
|
||||
bool: 是否成功找到天空比例低于阈值的位置
|
||||
bool: 是否成功找到红色区域比例高于阈值的位置
|
||||
"""
|
||||
def analyze_red_area_ratio(image):
|
||||
"""
|
||||
分析图像中红色区域的占比
|
||||
输入: BGR图像
|
||||
返回: 红色区域占比 (0~1)
|
||||
"""
|
||||
# 转换到HSV空间
|
||||
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||||
# 红色有两个区间
|
||||
lower_red1 = np.array([0, 70, 50])
|
||||
upper_red1 = np.array([10, 255, 255])
|
||||
lower_red2 = np.array([160, 70, 50])
|
||||
upper_red2 = np.array([180, 255, 255])
|
||||
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
||||
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
||||
mask = cv2.bitwise_or(mask1, mask2)
|
||||
red_pixels = np.count_nonzero(mask)
|
||||
total_pixels = mask.shape[0] * mask.shape[1]
|
||||
ratio = red_pixels / total_pixels if total_pixels > 0 else 0
|
||||
return ratio
|
||||
|
||||
total_distance = 0
|
||||
success_flag = False
|
||||
|
||||
@ -115,24 +133,20 @@ def go_straight_until_sky_ratio_below(ctrl, msg,
|
||||
|
||||
while total_distance < max_distance:
|
||||
# 获取当前图像
|
||||
current_image = ctrl.image_processor.get_current_image()
|
||||
current_image = ctrl.image_processor.get_current_image('ai')
|
||||
if current_image is None:
|
||||
warning("无法获取图像,等待...", "图像")
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
|
||||
# 保存当前图像用于分析
|
||||
temp_image_path = "/tmp/current_sky_image.jpg"
|
||||
cv2.imwrite(temp_image_path, current_image)
|
||||
|
||||
# 分析灰色天空比例
|
||||
# 分析红色区域比例
|
||||
try:
|
||||
sky_ratio = analyze_gray_sky_ratio(temp_image_path)
|
||||
info(f"当前灰色天空比例: {sky_ratio:.2%}", "分析")
|
||||
red_ratio = analyze_red_area_ratio(current_image)
|
||||
info(f"当前红色区域比例: {red_ratio:.2%}", "分析")
|
||||
|
||||
# 如果天空比例高于阈值,停止移动
|
||||
if sky_ratio < sky_ratio_threshold:
|
||||
success(f"检测到灰色天空比例({sky_ratio:.2%})低于阈值({sky_ratio_threshold:.2%}),停止移动", "完成")
|
||||
# 如果红色区域比例高于阈值,停止移动
|
||||
if red_ratio > red_ratio_threshold:
|
||||
success(f"检测到红色区域比例({red_ratio:.2%})高于阈值({red_ratio_threshold:.2%}),停止移动", "完成")
|
||||
success_flag = True
|
||||
break
|
||||
|
||||
@ -165,307 +179,6 @@ def go_straight_until_sky_ratio_below(ctrl, msg,
|
||||
ctrl.base_msg.stop()
|
||||
|
||||
if not success_flag and total_distance >= max_distance:
|
||||
warning(f"已达到最大移动距离 {max_distance} 米,但未找到天空比例小于 {sky_ratio_threshold:.2%} 的位置", "超时")
|
||||
warning(f"已达到最大移动距离 {max_distance} 米,但未找到红色区域比例高于 {red_ratio_threshold:.2%} 的位置", "超时")
|
||||
|
||||
return success_flag
|
||||
|
||||
def go_straight_with_enhanced_calibration(ctrl, msg, distance, speed=0.5, observe=False,
|
||||
mode=11, gait_id=3, step_height=[0.21, 0.21]):
|
||||
"""
|
||||
控制机器人在石板路上沿直线行走,使用视觉校准和姿态传感器融合来保持直线
|
||||
|
||||
参数:
|
||||
ctrl: Robot_Ctrl 对象
|
||||
msg: 控制消息对象
|
||||
distance: 要行走的距离(米)
|
||||
speed: 行走速度(米/秒)
|
||||
observe: 是否输出调试信息
|
||||
mode: 运动模式
|
||||
gait_id: 步态ID
|
||||
step_height: 摆动腿高度
|
||||
|
||||
返回:
|
||||
bool: 是否成功完成
|
||||
"""
|
||||
section("开始石板路增强直线移动", "石板路移动")
|
||||
|
||||
# 参数验证
|
||||
if abs(distance) < 0.01:
|
||||
info("距离太短,无需移动", "信息")
|
||||
return True
|
||||
|
||||
# 检查相机是否可用
|
||||
if not hasattr(ctrl, 'image_processor') or not hasattr(ctrl.image_processor, 'get_current_image'):
|
||||
warning("机器人控制器没有提供图像处理器,将使用姿态传感器辅助校准", "警告")
|
||||
|
||||
# 限制速度范围
|
||||
speed = min(max(abs(speed), 0.1), 1.0)
|
||||
|
||||
# 确定前进或后退方向
|
||||
forward = distance > 0
|
||||
move_speed = speed if forward else -speed
|
||||
abs_distance = abs(distance)
|
||||
|
||||
# 获取起始位置和姿态
|
||||
start_position = list(ctrl.odo_msg.xyz)
|
||||
start_yaw = ctrl.odo_msg.rpy[2] # 记录起始朝向
|
||||
|
||||
if observe:
|
||||
debug(f"起始位置: {start_position}", "位置")
|
||||
info(f"开始石板路增强直线移动,距离: {abs_distance:.3f}米,速度: {abs(move_speed):.2f}米/秒", "移动")
|
||||
|
||||
# 设置移动命令
|
||||
msg.mode = mode
|
||||
msg.gait_id = gait_id
|
||||
msg.step_height = step_height
|
||||
msg.duration = 0 # wait next cmd
|
||||
|
||||
# 根据需要移动的距离动态调整移动速度
|
||||
if abs_distance > 1.0:
|
||||
actual_speed = move_speed # 距离较远时用设定速度
|
||||
else:
|
||||
actual_speed = move_speed * 0.8 # 较近距离略微降速
|
||||
|
||||
# 设置移动速度和方向
|
||||
msg.vel_des = [actual_speed, 0, 0] # [前进速度, 侧向速度, 角速度]
|
||||
msg.life_count += 1
|
||||
|
||||
# 发送命令
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
# 估算移动时间,但实际上会通过里程计控制
|
||||
estimated_time = abs_distance / abs(actual_speed)
|
||||
timeout = estimated_time + 5 # 增加超时时间
|
||||
|
||||
# 使用里程计进行实时监控移动距离
|
||||
distance_moved = 0
|
||||
start_time = time.time()
|
||||
last_check_time = start_time
|
||||
position_check_interval = 0.1 # 位置检查间隔(秒)
|
||||
|
||||
# 计算移动方向单位向量(世界坐标系下)
|
||||
direction_vector = [math.cos(start_yaw), math.sin(start_yaw)]
|
||||
if not forward:
|
||||
direction_vector = [-direction_vector[0], -direction_vector[1]]
|
||||
|
||||
# 视觉跟踪相关变量
|
||||
vision_check_interval = 0.2 # 视觉检查间隔(秒)
|
||||
last_vision_check = start_time
|
||||
vision_correction_gain = 0.006 # 视觉修正增益系数
|
||||
|
||||
# 用于滤波的队列
|
||||
deviation_queue = []
|
||||
filter_size = 5
|
||||
last_valid_deviation = 0
|
||||
|
||||
# PID控制参数 - 用于角度修正
|
||||
kp_angle = 0.6 # 比例系数
|
||||
ki_angle = 0.02 # 积分系数
|
||||
kd_angle = 0.1 # 微分系数
|
||||
|
||||
# PID控制变量
|
||||
angle_error_integral = 0
|
||||
last_angle_error = 0
|
||||
|
||||
# 偏移量累计 - 用于检测持续偏移
|
||||
y_offset_accumulator = 0
|
||||
|
||||
# 动态调整参数
|
||||
slow_down_ratio = 0.85 # 当移动到目标距离的85%时开始减速
|
||||
completion_threshold = 0.95 # 当移动到目标距离的95%时停止
|
||||
|
||||
# 监控移动过程
|
||||
while distance_moved < abs_distance * completion_threshold and time.time() - start_time < timeout:
|
||||
current_time = time.time()
|
||||
|
||||
# 按固定间隔检查位置
|
||||
if current_time - last_check_time >= position_check_interval:
|
||||
# 获取当前位置和朝向
|
||||
current_position = ctrl.odo_msg.xyz
|
||||
current_yaw = ctrl.odo_msg.rpy[2]
|
||||
|
||||
# 计算在移动方向上的位移
|
||||
dx = current_position[0] - start_position[0]
|
||||
dy = current_position[1] - start_position[1]
|
||||
|
||||
# 计算在初始方向上的投影距离(实际前进距离)
|
||||
distance_moved = dx * direction_vector[0] + dy * direction_vector[1]
|
||||
distance_moved = abs(distance_moved) # 确保距离为正值
|
||||
|
||||
# 计算垂直于移动方向的偏移量(y方向偏移)
|
||||
y_offset = -dx * direction_vector[1] + dy * direction_vector[0]
|
||||
|
||||
# 累积y方向偏移量,检测持续偏移趋势
|
||||
y_offset_accumulator = y_offset_accumulator * 0.8 + y_offset * 0.2
|
||||
|
||||
# 根据前进或后退确定期望方向
|
||||
expected_direction = start_yaw if forward else (start_yaw + math.pi) % (2 * math.pi)
|
||||
|
||||
# 使用IMU朝向数据计算角度偏差
|
||||
yaw_error = current_yaw - expected_direction
|
||||
# 角度归一化
|
||||
while yaw_error > math.pi:
|
||||
yaw_error -= 2 * math.pi
|
||||
while yaw_error < -math.pi:
|
||||
yaw_error += 2 * math.pi
|
||||
|
||||
# 使用PID控制计算角速度修正
|
||||
# 比例项
|
||||
p_control = kp_angle * yaw_error
|
||||
|
||||
# 积分项 (带衰减)
|
||||
angle_error_integral = angle_error_integral * 0.9 + yaw_error
|
||||
angle_error_integral = max(-1.0, min(1.0, angle_error_integral)) # 限制积分范围
|
||||
i_control = ki_angle * angle_error_integral
|
||||
|
||||
# 微分项
|
||||
d_control = kd_angle * (yaw_error - last_angle_error)
|
||||
last_angle_error = yaw_error
|
||||
|
||||
# 计算总的角速度控制量
|
||||
angular_correction = -(p_control + i_control + d_control)
|
||||
# 限制最大角速度修正
|
||||
angular_correction = max(min(angular_correction, 0.3), -0.3)
|
||||
|
||||
# 根据持续的y偏移趋势增加侧向校正
|
||||
lateral_correction = 0
|
||||
if abs(y_offset_accumulator) > 0.05: # 如果累积偏移超过5厘米
|
||||
lateral_correction = -y_offset_accumulator * 0.8 # 反向校正
|
||||
lateral_correction = max(min(lateral_correction, 0.15), -0.15) # 限制最大侧向速度
|
||||
|
||||
if observe and abs(lateral_correction) > 0.05:
|
||||
warning(f"累积Y偏移校正: {y_offset_accumulator:.3f}米,应用侧向速度 {lateral_correction:.3f}m/s", "偏移")
|
||||
|
||||
# 计算完成比例
|
||||
completion_ratio = distance_moved / abs_distance
|
||||
|
||||
# 根据距离完成情况调整速度
|
||||
if completion_ratio > slow_down_ratio:
|
||||
# 计算减速系数
|
||||
slow_factor = 1.0 - (completion_ratio - slow_down_ratio) / (1.0 - slow_down_ratio)
|
||||
# 确保不会减速太多
|
||||
slow_factor = max(0.3, slow_factor)
|
||||
new_speed = actual_speed * slow_factor
|
||||
|
||||
if observe and abs(new_speed - msg.vel_des[0]) > 0.05:
|
||||
info(f"减速: {msg.vel_des[0]:.2f} -> {new_speed:.2f} 米/秒 (完成: {completion_ratio*100:.1f}%)", "移动")
|
||||
|
||||
actual_speed = new_speed
|
||||
|
||||
# 应用修正 - 同时应用角速度和侧向速度修正
|
||||
msg.vel_des = [actual_speed, lateral_correction, angular_correction]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
if observe and current_time % 1.0 < position_check_interval:
|
||||
debug(f"已移动: {distance_moved:.3f}米, 目标: {abs_distance:.3f}米 (完成: {completion_ratio*100:.1f}%)", "距离")
|
||||
debug(f"Y偏移: {y_offset:.3f}米, 累积偏移: {y_offset_accumulator:.3f}米", "偏移")
|
||||
debug(f"朝向偏差: {math.degrees(yaw_error):.1f}度, 角速度修正: {angular_correction:.3f}rad/s", "角度")
|
||||
debug(f"PID: P={p_control:.3f}, I={i_control:.3f}, D={d_control:.3f}", "控制")
|
||||
|
||||
# 更新检查时间
|
||||
last_check_time = current_time
|
||||
|
||||
# 定期进行视觉检查和修正 # TODO 这个函数如果用于 上下坡的话,感觉或许就不需要了,如果能保证 task 2-5 的效果。
|
||||
if hasattr(ctrl, 'image_processor') and current_time - last_vision_check >= vision_check_interval:
|
||||
try:
|
||||
# 获取当前相机帧
|
||||
frame = ctrl.image_processor.get_current_image()
|
||||
if frame is not None:
|
||||
# 检测轨道线 - 使用特定的石板路模式
|
||||
center_info, _, _ = detect_dual_track_lines(
|
||||
frame, observe=False, save_log=False)
|
||||
|
||||
# 如果成功检测到轨道线,使用它进行修正
|
||||
if center_info is not None:
|
||||
# 获取当前偏差
|
||||
current_deviation = center_info["deviation"]
|
||||
last_valid_deviation = current_deviation
|
||||
|
||||
# 添加到队列进行滤波
|
||||
deviation_queue.append(current_deviation)
|
||||
if len(deviation_queue) > filter_size:
|
||||
deviation_queue.pop(0)
|
||||
|
||||
# 计算滤波后的偏差值 (去除最大和最小值后的平均)
|
||||
if len(deviation_queue) >= 3:
|
||||
filtered_deviations = sorted(deviation_queue)[1:-1] if len(deviation_queue) > 2 else deviation_queue
|
||||
filtered_deviation = sum(filtered_deviations) / len(filtered_deviations)
|
||||
else:
|
||||
filtered_deviation = current_deviation
|
||||
|
||||
# 计算视觉侧向修正速度
|
||||
vision_lateral_correction = -filtered_deviation * vision_correction_gain
|
||||
# 限制最大侧向速度修正
|
||||
vision_lateral_correction = max(min(vision_lateral_correction, 0.2), -0.2)
|
||||
|
||||
# 与当前的侧向校正进行融合 (加权平均)
|
||||
if msg.vel_des[1] != 0:
|
||||
# 如果已经有侧向校正,与视觉校正进行融合
|
||||
fused_lateral = msg.vel_des[1] * 0.3 + vision_lateral_correction * 0.7
|
||||
else:
|
||||
# 如果没有侧向校正,直接使用视觉校正
|
||||
fused_lateral = vision_lateral_correction
|
||||
|
||||
if observe and abs(vision_lateral_correction) > 0.05:
|
||||
warning(f"视觉修正: 偏差 {filtered_deviation:.1f}像素,应用侧向速度 {vision_lateral_correction:.3f}m/s", "视觉")
|
||||
|
||||
# 应用视觉修正,保留当前前进速度和角速度
|
||||
msg.vel_des = [msg.vel_des[0], fused_lateral, msg.vel_des[2]]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
|
||||
if observe and current_time % 1.0 < vision_check_interval:
|
||||
debug(f"视觉检测: 原始偏差 {current_deviation:.1f}像素, 滤波后 {filtered_deviation:.1f}像素", "视觉")
|
||||
debug(f"融合侧向速度: {fused_lateral:.3f}m/s", "视觉")
|
||||
except Exception as e:
|
||||
if observe:
|
||||
error(f"视觉检测异常: {e}", "错误")
|
||||
|
||||
# 更新视觉检查时间
|
||||
last_vision_check = current_time
|
||||
|
||||
# 短暂延时
|
||||
time.sleep(0.01)
|
||||
|
||||
# 平滑停止
|
||||
slowdown_steps = 5
|
||||
for i in range(slowdown_steps, 0, -1):
|
||||
slowdown_factor = i / slowdown_steps
|
||||
msg.vel_des = [actual_speed * slowdown_factor, 0, 0]
|
||||
msg.life_count += 1
|
||||
ctrl.Send_cmd(msg)
|
||||
time.sleep(0.1)
|
||||
|
||||
# 最后完全停止
|
||||
if hasattr(ctrl.base_msg, 'stop_smooth'):
|
||||
ctrl.base_msg.stop_smooth()
|
||||
else:
|
||||
ctrl.base_msg.stop()
|
||||
|
||||
# 获取最终位置和实际移动距离
|
||||
final_position = ctrl.odo_msg.xyz
|
||||
dx = final_position[0] - start_position[0]
|
||||
dy = final_position[1] - start_position[1]
|
||||
actual_distance = math.sqrt(dx*dx + dy*dy)
|
||||
|
||||
# 计算最终y方向偏移
|
||||
final_y_offset = -dx * direction_vector[1] + dy * direction_vector[0]
|
||||
|
||||
if observe:
|
||||
success(f"石板路增强直线移动完成,实际移动距离: {actual_distance:.3f}米", "完成")
|
||||
info(f"最终Y方向偏移: {final_y_offset:.3f}米", "偏移")
|
||||
|
||||
# 判断是否成功完成
|
||||
distance_error = abs(actual_distance - abs_distance)
|
||||
y_offset_error = abs(final_y_offset)
|
||||
|
||||
go_success = distance_error < 0.1 and y_offset_error < 0.1 # 距离误差和y偏移都小于10厘米视为成功
|
||||
|
||||
if observe:
|
||||
if go_success:
|
||||
success(f"移动成功", "成功")
|
||||
else:
|
||||
warning(f"移动不够精确,距离误差: {distance_error:.3f}米, Y偏移: {y_offset_error:.3f}米", "警告")
|
||||
|
||||
return go_success
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user