Merge branch 'main' of ssh://120.27.199.238:222/Havoc420mac/mi-task

This commit is contained in:
Havoc 2025-05-15 20:18:10 +08:00
commit 8c899fda7d
3 changed files with 16 additions and 40 deletions

View File

@ -27,6 +27,7 @@ def align_to_horizontal_line(ctrl, msg, observe=False, max_attempts=3):
image = ctrl.image_processor.get_current_image() image = ctrl.image_processor.get_current_image()
while attempts < max_attempts and not aligned: while attempts < max_attempts and not aligned:
print(f"尝试次数: {attempts+1}/{max_attempts}")
# 检测横向线边缘 # 检测横向线边缘
edge_point, edge_info = detect_horizontal_track_edge(ctrl.image_processor.get_current_image(), observe=observe, delay=1000 if observe else 0) edge_point, edge_info = detect_horizontal_track_edge(ctrl.image_processor.get_current_image(), observe=observe, delay=1000 if observe else 0)
@ -61,37 +62,6 @@ def align_to_horizontal_line(ctrl, msg, observe=False, max_attempts=3):
if observe: if observe:
print(f"需要旋转的角度: {angle_to_rotate:.2f}") print(f"需要旋转的角度: {angle_to_rotate:.2f}")
# 可视化横向线和校准角度
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
height, width = img.shape[:2]
center_x = width // 2
# 画出检测到的横向线
line_length = 200
end_x = edge_point[0] + line_length
end_y = int(edge_point[1] + slope * line_length)
start_x = edge_point[0] - line_length
start_y = int(edge_point[1] - slope * line_length)
cv2.line(img, (start_x, start_y), (end_x, end_y), (0, 255, 0), 2)
# 画出水平线(目标线)
horizontal_y = edge_point[1]
cv2.line(img, (center_x - line_length, horizontal_y),
(center_x + line_length, horizontal_y), (0, 0, 255), 2)
# 标记角度
cv2.putText(img, f"当前斜率: {slope:.4f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(img, f"旋转角度: {angle_to_rotate:.2f}°", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("校准旋转分析", img)
cv2.waitKey(1500 if observe else 1)
# 执行旋转 # 执行旋转
# 如果角度很小,增加一个小的偏移以确保旋转足够 # 如果角度很小,增加一个小的偏移以确保旋转足够
if abs(angle_to_rotate) < 3.0: if abs(angle_to_rotate) < 3.0:
@ -247,7 +217,7 @@ def move_to_hori_line(ctrl, msg, target_distance=0.5, observe=False):
""" """
# 首先校准到水平 # 首先校准到水平
print("校准到横向线水平") print("校准到横向线水平")
aligned = align_to_horizontal_line(ctrl, msg, observe=False) aligned = align_to_horizontal_line(ctrl, msg, observe=observe)
if not aligned: if not aligned:
print("无法校准到横向线水平,停止移动") print("无法校准到横向线水平,停止移动")
@ -256,7 +226,7 @@ def move_to_hori_line(ctrl, msg, target_distance=0.5, observe=False):
# 检测横向线 # 检测横向线
# image = cv2.imread("current_image.jpg") # TEST # image = cv2.imread("current_image.jpg") # TEST
image = ctrl.image_processor.get_current_image() image = ctrl.image_processor.get_current_image()
edge_point, edge_info = detect_horizontal_track_edge(image, observe=False) edge_point, edge_info = detect_horizontal_track_edge(image, observe=observe)
if edge_point is None or edge_info is None: if edge_point is None or edge_info is None:
print("无法检测到横向线,停止移动") print("无法检测到横向线,停止移动")
@ -352,7 +322,7 @@ def move_to_hori_line(ctrl, msg, target_distance=0.5, observe=False):
# 如果没有提供图像处理器或图像验证失败,则使用里程计数据判断 # 如果没有提供图像处理器或图像验证失败,则使用里程计数据判断
return abs(distance_moved - abs(distance_to_move)) < 0.1 # 如果误差小于10厘米则认为成功 return abs(distance_moved - abs(distance_to_move)) < 0.1 # 如果误差小于10厘米则认为成功
def arc_turn_around_hori_line(ctrl, msg, target_distance=0.5, angle_deg=90, left=True, observe=False): def arc_turn_around_hori_line(ctrl, msg, target_distance=0.2, angle_deg=90, left=True, observe=False):
""" """
对准前方横线然后以计算出来的距离为半径做一个向左或向右的圆弧旋转 对准前方横线然后以计算出来的距离为半径做一个向左或向右的圆弧旋转
参数: 参数:
@ -367,14 +337,14 @@ def arc_turn_around_hori_line(ctrl, msg, target_distance=0.5, angle_deg=90, left
""" """
# 1. 对准横线 # 1. 对准横线
print("校准到横向线水平") print("校准到横向线水平")
aligned = align_to_horizontal_line(ctrl, msg, observe=False) aligned = align_to_horizontal_line(ctrl, msg, observe=observe)
if not aligned: if not aligned:
print("无法校准到横向线水平,停止动作") print("无法校准到横向线水平,停止动作")
return False return False
# 2. 检测横线并计算距离 # 2. 检测横线并计算距离
image = ctrl.image_processor.get_current_image() image = ctrl.image_processor.get_current_image()
edge_point, edge_info = detect_horizontal_track_edge(image, observe=False) edge_point, edge_info = detect_horizontal_track_edge(image, observe=observe)
if edge_point is None or edge_info is None: if edge_point is None or edge_info is None:
print("无法检测到横向线,停止动作") print("无法检测到横向线,停止动作")
return False return False
@ -395,8 +365,11 @@ def arc_turn_around_hori_line(ctrl, msg, target_distance=0.5, angle_deg=90, left
# 3. 计算圆弧运动参数 # 3. 计算圆弧运动参数
angle_rad = math.radians(angle_deg) angle_rad = math.radians(angle_deg)
# 设定角速度rad/s可根据实际调整 # 设定角速度rad/s可根据实际调整
w = 0.4 if left else -0.4 # 左转为正,右转为负
v = w * r # 线速度,正负号与角速度方向一致 base_w = 0.6
w = base_w if left else -base_w # 左转为正,右转为负
v = abs(w * r) # 线速度,正负号与角速度方向一致
t = abs(angle_rad / w) # 运动时间,取绝对值保证为正 t = abs(angle_rad / w) # 运动时间,取绝对值保证为正
if observe: if observe:

View File

@ -7,7 +7,7 @@ import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from base_move.move_base_hori_line import move_to_hori_line, arc_turn_around_hori_line from base_move.move_base_hori_line import move_to_hori_line, arc_turn_around_hori_line
observe = True observe = False
def run_task_1(ctrl, msg): def run_task_1(ctrl, msg):
print('Running task 1...') print('Running task 1...')
@ -15,7 +15,9 @@ def run_task_1(ctrl, msg):
# v2 # v2
arc_turn_around_hori_line(ctrl, msg, angle_deg=90, left=False, observe=observe) arc_turn_around_hori_line(ctrl, msg, angle_deg=90, left=False, observe=observe)
move_to_hori_line(ctrl, msg, distance=1, observe=observe) return True
move_to_hori_line(ctrl, msg, target_distance=1, observe=observe)
arc_turn_around_hori_line(ctrl, msg, angle_deg=180, left=True, observe=observe) arc_turn_around_hori_line(ctrl, msg, angle_deg=180, left=True, observe=observe)

View File

@ -3,6 +3,7 @@ import numpy as np
from sklearn import linear_model from sklearn import linear_model
def detect_horizontal_track_edge(image, observe=False, delay=1000): def detect_horizontal_track_edge(image, observe=False, delay=1000):
observe = False # TSET
""" """
检测正前方横向黄色赛道的边缘并返回y值最大的边缘点 检测正前方横向黄色赛道的边缘并返回y值最大的边缘点