Refactor task navigation and enhance movement parameters

- Updated task_1.py to improve navigation logic and streamline movement functions.
- Enhanced task_2.py with refined movement parameters for better execution and added logging for debugging.
- Adjusted function calls in main.py to reflect changes in task execution flow.
This commit is contained in:
havoc420ubuntu 2025-05-27 18:17:59 +00:00
parent bffcd973e0
commit 852a948a6f
2 changed files with 238 additions and 0 deletions

View File

@ -0,0 +1,106 @@
import cv2
import os
import sys
import time
import argparse
# 添加父目录到系统路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(current_dir))
sys.path.append(project_root)
from utils.yellow_area_analyzer import analyze_yellow_area_ratio
def process_image(image_path, save_dir=None, show_steps=False):
"""处理单张图像,分析黄色区域占比"""
print(f"处理图像: {image_path}")
# 分析黄色区域占比
start_time = time.time()
yellow_ratio = analyze_yellow_area_ratio(image_path, debug=show_steps, save_result=save_dir is not None)
processing_time = time.time() - start_time
# 输出结果
print(f"处理时间: {processing_time:.3f}")
print(f"黄色区域占比: {yellow_ratio:.2%}")
if yellow_ratio > 0.5:
print("警告: 图像中黄色区域占比超过50%")
elif yellow_ratio > 0.3:
print("注意: 图像中黄色区域占比较高")
elif yellow_ratio < 0.05:
print("注意: 图像中几乎没有黄色区域")
print("-" * 30)
# 如果保存结果,确保目录存在
if save_dir and not os.path.exists(save_dir):
os.makedirs(save_dir)
return yellow_ratio
def process_directory(dir_path, save_dir=None, show_steps=False):
"""处理目录中的所有图像"""
print(f"处理目录: {dir_path}")
# 检查目录是否存在
if not os.path.isdir(dir_path):
print(f"错误: 目录 '{dir_path}' 不存在")
return
# 获取目录中的所有图像文件
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp']
image_files = [f for f in os.listdir(dir_path)
if os.path.isfile(os.path.join(dir_path, f)) and
os.path.splitext(f)[1].lower() in image_extensions]
if not image_files:
print(f"错误: 目录 '{dir_path}' 中没有图像文件")
return
# 处理每个图像文件
results = {}
for image_file in image_files:
image_path = os.path.join(dir_path, image_file)
yellow_ratio = process_image(image_path, save_dir, show_steps)
results[image_file] = yellow_ratio
# 输出统计信息
print("=" * 50)
print(f"处理完成,共 {len(results)} 张图像")
if results:
avg_ratio = sum(results.values()) / len(results)
max_ratio = max(results.values())
min_ratio = min(results.values())
max_file = max(results, key=results.get)
min_file = min(results, key=results.get)
print(f"平均黄色区域占比: {avg_ratio:.2%}")
print(f"最大黄色区域占比: {max_ratio:.2%} (文件: {max_file})")
print(f"最小黄色区域占比: {min_ratio:.2%} (文件: {min_file})")
return results
def main():
parser = argparse.ArgumentParser(description='黄色区域分析演示程序')
parser.add_argument('--input', type=str, default='captured_images/test/image_20250525_090252.png', help='输入图像或目录的路径')
parser.add_argument('--output', type=str, default='./results', help='输出结果的保存路径')
parser.add_argument('--show', default=True, action='store_true', help='显示处理步骤')
args = parser.parse_args()
# 检查输入路径
if not os.path.exists(args.input):
print(f"错误:路径 '{args.input}' 不存在")
return
# 根据输入类型处理
if os.path.isfile(args.input):
# 单个文件
process_image(args.input, args.output, args.show)
else:
# 目录
process_directory(args.input, args.output, args.show)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,132 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import os
import argparse
import matplotlib.pyplot as plt
def analyze_yellow_area_ratio(image_path, debug=False, save_result=False):
"""
专门针对黄色区域的分析算法
参数:
image_path: 图片路径
debug: 是否显示处理过程中的图像用于调试
save_result: 是否保存处理结果图像
返回:
yellow_ratio: 黄色区域占比0-1之间的浮点数
"""
# 读取图片
img = cv2.imread(image_path)
if img is None:
raise ValueError(f"无法读取图片: {image_path}")
# 获取图片文件名(不带路径和扩展名)
filename = os.path.splitext(os.path.basename(image_path))[0]
# 转换为HSV色彩空间更适合颜色分割
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 提取图像的各个通道
h, s, v = cv2.split(hsv)
# 黄色在HSV中的范围色调约为20-30度OpenCV中为10-30
# 黄色通常有较高的饱和度和亮度
yellow_hue_lower = np.array([20, 100, 100])
yellow_hue_upper = np.array([40, 255, 255])
# 创建黄色区域掩码
yellow_mask = cv2.inRange(hsv, yellow_hue_lower, yellow_hue_upper)
# 应用形态学操作
kernel = np.ones((5, 5), np.uint8)
yellow_mask = cv2.morphologyEx(yellow_mask, cv2.MORPH_OPEN, kernel)
yellow_mask = cv2.morphologyEx(yellow_mask, cv2.MORPH_CLOSE, kernel)
# 使用连通区域分析,去除小的噪点区域
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(yellow_mask, connectivity=8)
# 过滤小的连通区域
min_size = 500 # 最小连通区域大小
filtered_yellow_mask = np.zeros_like(yellow_mask)
# 从索引1开始因为0是背景
for i in range(1, num_labels):
if stats[i, cv2.CC_STAT_AREA] >= min_size:
filtered_yellow_mask[labels == i] = 255
# 计算黄色区域占比
height, width = yellow_mask.shape
total_pixels = height * width
yellow_pixels = np.sum(filtered_yellow_mask == 255)
yellow_ratio = yellow_pixels / total_pixels
# 在原图上标记黄色区域
result = img.copy()
overlay = img.copy()
overlay[filtered_yellow_mask > 0] = [0, 165, 255] # 用橙色标记黄色区域
cv2.addWeighted(overlay, 0.4, img, 0.6, 0, result) # 半透明效果
# 显示检测结果信息
cv2.putText(result, f"Yellow Ratio: {yellow_ratio:.2%}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 165, 255), 2)
# 调试模式:显示处理过程图像
if debug:
plt.figure(figsize=(15, 10))
plt.subplot(231)
plt.title("Original Image")
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.subplot(232)
plt.title("Hue Channel")
plt.imshow(h, cmap='hsv')
plt.subplot(233)
plt.title("Saturation Channel")
plt.imshow(s, cmap='gray')
plt.subplot(234)
plt.title("Initial Yellow Mask")
plt.imshow(yellow_mask, cmap='gray')
plt.subplot(235)
plt.title("Filtered Yellow Mask")
plt.imshow(filtered_yellow_mask, cmap='gray')
plt.subplot(236)
plt.title("Yellow Detection Result")
plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
# 保存结果
if save_result:
result_dir = "results"
os.makedirs(result_dir, exist_ok=True)
output_path = os.path.join(result_dir, f"{filename}_yellow_area_result.jpg")
cv2.imwrite(output_path, result)
print(f"结果已保存至: {output_path}")
return yellow_ratio
def main():
parser = argparse.ArgumentParser(description='分析图片中黄色区域占比')
parser.add_argument('--image_path', default='./image_20250525_090252.png', type=str, help='图片路径')
parser.add_argument('--debug', default=False, action='store_true', help='显示处理过程图像')
parser.add_argument('--save', action='store_true', help='保存处理结果图像')
args = parser.parse_args()
try:
yellow_ratio = analyze_yellow_area_ratio(args.image_path, args.debug, args.save)
print(f"黄色区域占比: {yellow_ratio:.2%}")
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()