优化follow_left_side_track函数,调整最大时间参数至30秒,增强轨迹跟随的稳定性和响应速度;改进检测逻辑,确保在未检测到轨迹线时能够继续使用上一次控制命令;更新速度计算方式,确保更平滑的调整和停止过程。

This commit is contained in:
Havoc 2025-05-26 01:16:20 +08:00
parent 612256c525
commit 76c00337ed

View File

@ -1222,7 +1222,7 @@ def follow_dual_tracks(ctrl, msg, speed=0.5, max_time=30, target_distance=None,
return True
def follow_left_side_track(ctrl, msg, target_distance=540, speed=0.3, max_time=3, observe=False):
def follow_left_side_track(ctrl, msg, target_distance=540, speed=0.3, max_time=30, observe=False):
"""
控制机器狗向左侧移动并靠近左侧的黄色轨迹线只进行侧向移动不进行前进
@ -1248,255 +1248,90 @@ def follow_left_side_track(ctrl, msg, target_distance=540, speed=0.3, max_time=3
# 记录起始时间
start_time = time.time()
# 记录起始位置
start_position = list(ctrl.odo_msg.xyz)
# 记录初始检测
image = ctrl.image_processor.get_current_image()
track_info, _ = detect_left_side_track(image, observe=observe, save_log=True)
if track_info is None:
error("无法检测到左侧轨迹线,无法开始跟踪", "失败")
return False
initial_distance = track_info["distance_to_left"]
if observe:
debug(f"起始位置: {start_position}", "位置")
# 在起点放置绿色标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(start_position[0], start_position[1], start_position[2] if len(start_position) > 2 else 0.0, 'green', observe=True)
info(f"初始距离: {initial_distance:.1f}px, 目标距离: {target_distance}px", "初始")
# 最大侧向速度限制与动态调整
max_side_velocity = speed
min_side_velocity = 0.05 # 最小侧向速度,确保能够缓慢移动
# 最大允许误差(像素)
error_threshold = 30
# 检测成功计数器
detection_success_count = 0
detection_total_count = 0
# 保存上一次有效的检测结果,用于检测失败时的平滑过渡
last_valid_track_info = None
# 滤波队列 - 增大滤波窗口以提高稳定性
filter_size = 7
distance_queue = []
# 设置差值阈值 - 当距离与目标的差值小于此阈值时,认为已达到目标
distance_threshold = 25 # 像素误差阈值
# 记录目标到达状态和稳定计数
target_reached = False
stable_count = 0
required_stable_count = 8 # 连续多帧满足条件才算稳定到达目标
# 简单比例控制参数
kp = 0.0005
# 开始跟踪循环
while time.time() - start_time < max_time:
# 获取当前图像
image = ctrl.image_processor.get_current_image()
# 检测左侧轨迹线
detection_total_count += 1
track_info, tracking_point = detect_left_side_track(image, observe=observe, delay=500 if observe else 0, save_log=True)
image = ctrl.image_processor.get_current_image()
track_info, _ = detect_left_side_track(image, observe=observe, save_log=True)
if track_info is not None:
detection_success_count += 1
# 保存有效的轨迹信息
last_valid_track_info = track_info
# 获取当前与左侧线的距离
current_distance = track_info["distance_to_left"]
# 添加到滤波队列
distance_queue.append(current_distance)
if len(distance_queue) > filter_size:
distance_queue.pop(0)
# 计算滤波后的距离值 - 使用中值滤波,对抗异常值
if len(distance_queue) >= 3:
# 中值滤波更能抵抗异常值
filtered_distance = sorted(distance_queue)[len(distance_queue) // 2]
else:
filtered_distance = current_distance
# 直接计算当前距离与目标距离的差值
difference = target_distance - filtered_distance # 正值:需要向左移动;负值:需要向右移动
if observe and time.time() % 0.5 < 0.02:
debug(f"左侧距离: {filtered_distance:.1f}px, 目标距离: {target_distance}px, 差值: {difference:.1f}px", "距离")
# 检查是否达到目标位置(差值小于阈值)
if abs(difference) < distance_threshold:
stable_count += 1
if stable_count >= required_stable_count and not target_reached:
target_reached = True
if observe:
success(f"已达到目标位置,当前距离: {filtered_distance:.1f}px, 与目标差值: {abs(difference):.1f}px", "成功")
# 在目标位置附近时,使用非常小的速度进行微调
# 根据差值比例计算速度,使调整更平滑
adjustment_factor = difference / distance_threshold # 归一化到[-1,1]范围
side_velocity = min_side_velocity * adjustment_factor * 0.5 # 乘以0.5使调整更微小
# 如果计算出的速度非常小直接设为0
if abs(side_velocity) < 0.01:
side_velocity = 0
if observe and time.time() % 0.5 < 0.02 and side_velocity != 0:
info(f"接近目标位置,微调: {side_velocity:.3f}m/s", "调整")
else:
# 不在目标位置,根据差值计算速度
stable_count = 0
target_reached = False
# 计算速度系数 - 差值越大,速度越大,但有上限
# 使用非线性映射,使速度变化更平滑
if abs(difference) > 200:
# 差值大于200像素时使用最大速度
speed_factor = 1.0
else:
# 差值在0-200像素之间速度从0增长到最大
speed_factor = min(1.0, abs(difference) / 200.0)
# 应用平方根函数使速度增长曲线更合理(开始缓慢,后面加速)
speed_factor = math.sqrt(speed_factor)
# 应用方向(差值为正向左移动,为负向右移动)
side_velocity = max_side_velocity * speed_factor * (1 if difference > 0 else -1)
if observe and time.time() % 0.5 < 0.02:
direction = "" if side_velocity > 0 else ""
info(f"距离目标较{direction}远({difference:.1f}px),向{direction}移动: {side_velocity:.3f}m/s", "调整")
# 确保最小移动速度 - 当需要移动但计算值太小时
if 0 < abs(side_velocity) < min_side_velocity:
side_velocity = min_side_velocity * (1 if side_velocity > 0 else -1)
# 限制侧向速度范围
side_velocity = max(-max_side_velocity, min(max_side_velocity, side_velocity))
if observe and time.time() % 0.5 < 0.02:
debug(f"控制指令: 侧向={side_velocity:.2f}m/s", "速度")
# 设置速度命令 - [前进速度, 侧向速度, 角速度]
# 侧向速度为正表示向左移动,为负表示向右移动
# 前进速度保持为0只进行侧向移动
msg.vel_des = [0, side_velocity, 0]
# 使用轨迹线斜率进行小角度调整,确保机器人方向与轨迹线平行
if not track_info["is_vertical"]: # 对于非垂直线,进行角度校正
slope = track_info["slope"]
# 计算旋转角度 - 垂直线的ideal_angle应该是0
angle_correction = -math.atan(1/slope) if abs(slope) > 0.01 else 0
# 将角度校正应用为小的角速度,并根据距离调整强度
angle_factor = 1.0
if target_reached:
angle_factor = 0.5 # 接近目标时减弱角度校正
angular_velocity = angle_correction * 0.2 * angle_factor
# 限制角速度范围
angular_velocity = max(-0.2, min(0.2, angular_velocity))
if abs(angular_velocity) > 0.01: # 只在需要明显校正时应用
msg.vel_des[2] = angular_velocity
if observe and time.time() % 0.5 < 0.02:
debug(f"应用角度校正,斜率: {slope:.2f}, 角速度: {angular_velocity:.3f}", "校正")
else:
warning("未检测到左侧轨迹线", "警告")
# 如果之前有有效检测结果,使用上一次的控制值但降低强度
if last_valid_track_info is not None and len(distance_queue) > 0:
# 获取上次的滤波距离
last_filtered_distance = distance_queue[-1]
# 计算上次距离与目标的差值
last_difference = target_distance - last_filtered_distance
# 根据上次差值决定行为
if abs(last_difference) < distance_threshold:
# 上次接近目标,保持位置
side_velocity = 0
if observe:
info("上次距离接近目标,保持当前位置", "保持")
else:
# 根据差值方向移动,但速度降低
direction = 1 if last_difference > 0 else -1
side_velocity = 0.08 * direction
if observe:
info(f"根据上次距离差值({last_difference:.1f}px),向{'' if direction > 0 else ''}缓慢移动", "调整")
msg.vel_des = [0, side_velocity, 0]
if observe:
warning(f"使用上次距离估计控制: 侧向={side_velocity:.2f}m/s", "恢复")
else:
# 如果从未检测到轨迹线,默认向左侧移动一点,尝试寻找
default_side_velocity = 0.08
msg.vel_des = [0, default_side_velocity, 0]
if observe:
warning(f"无法检测到左侧轨迹线,向左缓慢移动尝试寻找: {default_side_velocity:.2f}m/s", "警告")
if track_info is None:
warning("未检测到左侧轨迹线,继续使用上一次控制", "警告")
# 继续执行最后一次的控制命令
msg.life_count += 1
ctrl.Send_cmd(msg)
time.sleep(0.1)
continue
# 发送命令
# 获取当前距离
current_distance = track_info["distance_to_left"]
# 计算误差 (正值表示需要向左移动,负值表示需要向右移动)
error = target_distance - current_distance
if observe and time.time() % 0.5 < 0.02: # 每0.5秒左右打印一次
debug(f"当前距离: {current_distance:.1f}px, 目标距离: {target_distance}px, 误差: {error:.1f}px", "跟踪")
# 检查是否已达到目标
if abs(error) < error_threshold:
success(f"已达到目标距离,当前距离: {current_distance:.1f}px, 目标距离: {target_distance}px", "完成")
break
# 计算侧向速度 (简单比例控制)
lateral_velocity = kp * error
# 限制侧向速度
lateral_velocity = max(-speed, min(speed, lateral_velocity))
# 设置速度命令
msg.vel_des = [0, lateral_velocity, 0] # [前进速度, 侧向速度, 角速度]
msg.life_count += 1
ctrl.Send_cmd(msg)
# 短暂延时
time.sleep(0.05)
# 计算已移动距离(仅用于记录)
current_position = ctrl.odo_msg.xyz
dx = current_position[0] - start_position[0]
dy = current_position[1] - start_position[1]
distance_moved = math.sqrt(dx*dx + dy*dy)
if observe and time.time() % 2.0 < 0.02: # 每2秒左右打印一次
info(f"已移动: {distance_moved:.3f}米, 已用时间: {time.time() - start_time:.1f}", "移动")
# 显示检测成功率
if detection_total_count > 0:
detection_rate = (detection_success_count / detection_total_count) * 100
info(f"左侧轨迹检测成功率: {detection_rate:.1f}% ({detection_success_count}/{detection_total_count})", "统计")
time.sleep(0.1)
# 平滑停止
if observe:
info("开始平滑停止", "停止")
# 更平滑的停止
slowdown_steps = 4
for i in range(slowdown_steps, 0, -1):
slowdown_factor = i / slowdown_steps
if i > 1:
# 前几步只降低速度
last_vel = msg.vel_des[1]
reduced_vel = last_vel * slowdown_factor
msg.vel_des = [0, reduced_vel, 0]
else:
# 最后一步完全停止
msg.vel_des = [0, 0, 0]
msg.life_count += 1
ctrl.Send_cmd(msg)
time.sleep(0.12) # 稍微延长每步的等待时间,使停止更平滑
# 最后完全停止
# 停止移动
msg.vel_des = [0, 0, 0]
msg.life_count += 1
ctrl.Send_cmd(msg)
time.sleep(0.2)
ctrl.base_msg.stop()
# 计算最终移动距离
final_position = ctrl.odo_msg.xyz
dx = final_position[0] - start_position[0]
dy = final_position[1] - start_position[1]
final_distance = math.sqrt(dx*dx + dy*dy)
# 最终检查
image = ctrl.image_processor.get_current_image()
track_info, _ = detect_left_side_track(image, observe=observe, save_log=True)
if observe:
# 在终点放置红色标记
end_position = list(final_position)
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(end_position[0], end_position[1], end_position[2] if len(end_position) > 2 else 0.0, 'red', observe=True)
if track_info is not None:
final_distance = track_info["distance_to_left"]
distance_error = abs(final_distance - target_distance)
final_success = distance_error < error_threshold
success(f"左侧轨迹跟随完成,总移动距离: {final_distance:.3f}", "完成")
if observe:
if final_success:
success(f"成功达到目标位置,最终距离: {final_distance:.1f}px, 目标: {target_distance}px", "成功")
else:
warning(f"未能精确达到目标位置,最终距离: {final_distance:.1f}px, 目标: {target_distance}px", "警告")
# 显示检测成功率
if detection_total_count > 0:
detection_rate = (detection_success_count / detection_total_count) * 100
info(f"左侧轨迹检测成功率: {detection_rate:.1f}% ({detection_success_count}/{detection_total_count})", "统计")
return target_reached
# 用法示例
if __name__ == "__main__":
move_to_hori_line(None, None, observe=True)
# 90度左转
arc_turn_around_hori_line(None, None, angle_deg=90, observe=True)
# 180度右转
arc_turn_around_hori_line(None, None, angle_deg=-90, observe=True)
# 双轨道跟随
follow_dual_tracks(None, None, observe=True)
# 左侧轨迹跟随
follow_left_side_track(None, None, observe=True)
return final_success
else:
if observe:
warning("无法检测最终位置的左侧轨迹线", "警告")
return False