Merge branch 'task-3' of ssh://120.27.199.238:222/Havoc420mac/mi-task into task-3

This commit is contained in:
Havoc 2025-05-28 18:08:34 +08:00
commit 5502fa55d3
2 changed files with 309 additions and 0 deletions

View File

@ -6,6 +6,8 @@ import copy
import math
import lcm
import numpy as np
import cv2
import tempfile
# 添加父目录到路径以便能够导入utils
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
@ -17,6 +19,7 @@ from base_move.turn_degree import turn_degree, turn_degree_v2
from base_move.go_straight import go_straight
from base_move.go_to_xy import go_to_x_v2
from file_send_lcmt import file_send_lcmt
from utils.yellow_area_analyzer import analyze_yellow_area_ratio
# 创建本模块特定的日志记录器
logger = get_logger("任务3")
@ -35,6 +38,7 @@ robot_cmd = {
'value':0, 'duration':0
}
def pass_up_down(ctrl, msg):
usergait_msg = file_send_lcmt()
lcm_usergait = lcm.LCM("udpm://239.255.76.67:7671?ttl=255")
@ -332,6 +336,164 @@ def pass_up_down(ctrl, msg):
pass
def go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3, max_time=30, observe=True):
"""
控制机器人直走直到摄像头检测到黄色区域比例超过指定阈值后开始下降时停止
参数:
ctrl: Robot_Ctrl 对象包含里程计信息
msg: robot_control_cmd_lcmt 对象用于发送命令
yellow_ratio_threshold: 黄色区域占比阈值(0-1之间的浮点数)默认为0.15
speed: 前进速度(/)默认为0.3/
max_time: 最大行走时间()默认为30秒
observe: 是否输出中间状态信息和可视化结果默认为True
返回:
bool: 是否成功检测到黄色区域并停止
"""
section("开始直行寻找黄色区域", "黄色检测")
# 设置移动命令基本参数
msg.mode = 11 # Locomotion模式
msg.gait_id = 26 # 自变频步态
msg.duration = 0 # wait next cmd
msg.step_height = [0.06, 0.06] # 抬腿高度
msg.vel_des = [speed, 0, 0] # [前进速度, 侧向速度, 角速度]
# 记录起始时间和位置
start_time = time.time()
start_position = list(ctrl.odo_msg.xyz)
if observe:
info(f"开始寻找黄色区域,阈值: {yellow_ratio_threshold:.2%}", "启动")
debug(f"起始位置: {start_position}", "位置")
# 检测间隔
check_interval = 0.3 # 秒
last_check_time = 0
# 黄色区域监测变量
yellow_peak_detected = False # 是否检测到峰值
yellow_decreasing = False # 是否开始下降
max_yellow_ratio = 0.0 # 记录最大黄色区域占比
yellow_ratio_history = [] # 记录黄色区域占比历史
history_window_size = 5 # 历史窗口大小,用于平滑处理
try:
# 开始移动
msg.life_count += 1
ctrl.Send_cmd(msg)
# 持续检测黄色区域
while time.time() - start_time < max_time and not yellow_decreasing:
current_time = time.time()
# 定期发送移动命令保持移动状态
if current_time - last_check_time >= check_interval:
# 获取当前图像并保存到临时文件
current_image = ctrl.image_processor.get_current_image()
# 创建临时文件保存图像
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
temp_filename = temp_file.name
cv2.imwrite(temp_filename, current_image)
try:
# 分析图像中的黄色区域
yellow_ratio = analyze_yellow_area_ratio(temp_filename, debug=False, save_result=False)
# 添加到历史记录
yellow_ratio_history.append(yellow_ratio)
if len(yellow_ratio_history) > history_window_size:
yellow_ratio_history.pop(0)
# 计算平滑后的当前黄色占比(使用最近几次的平均值以减少噪声)
current_smooth_ratio = sum(yellow_ratio_history) / len(yellow_ratio_history)
# 计算已移动距离(仅用于显示)
current_position = ctrl.odo_msg.xyz
dx = current_position[0] - start_position[0]
dy = current_position[1] - start_position[1]
distance_moved = math.sqrt(dx*dx + dy*dy)
if observe:
info(f"当前黄色区域占比: {yellow_ratio:.2%}, 平滑值: {current_smooth_ratio:.2%}, 已移动: {distance_moved:.2f}", "检测")
# 检测是否达到阈值(开始监测峰值)
if current_smooth_ratio >= yellow_ratio_threshold:
# 更新最大值
if current_smooth_ratio > max_yellow_ratio:
max_yellow_ratio = current_smooth_ratio
if not yellow_peak_detected:
yellow_peak_detected = True
if observe:
info(f"黄色区域占比超过阈值,开始监测峰值", "检测")
# 检测是否开始下降
elif yellow_peak_detected and current_smooth_ratio < max_yellow_ratio * 0.9: # 下降到峰值的90%以下认为开始下降
yellow_decreasing = True
if observe:
success(f"检测到黄色区域占比开始下降,峰值: {max_yellow_ratio:.2%}, 当前: {current_smooth_ratio:.2%}", "检测")
finally:
# 删除临时文件
try:
os.unlink(temp_filename)
except:
pass
# 更新心跳
msg.life_count += 1
ctrl.Send_cmd(msg)
last_check_time = current_time
# 小间隔
time.sleep(0.05)
# 平滑停止
if yellow_decreasing:
if observe:
info("开始平滑停止", "停止")
# 先降低速度再停止,实现平滑停止
slowdown_steps = 5
for i in range(slowdown_steps, 0, -1):
slowdown_factor = i / slowdown_steps
msg.vel_des = [speed * slowdown_factor, 0, 0]
msg.life_count += 1
ctrl.Send_cmd(msg)
time.sleep(0.1)
# 完全停止
ctrl.base_msg.stop()
# 计算最终移动距离
final_position = ctrl.odo_msg.xyz
dx = final_position[0] - start_position[0]
dy = final_position[1] - start_position[1]
final_distance = math.sqrt(dx*dx + dy*dy)
if observe:
if yellow_decreasing:
success(f"成功检测到黄色区域峰值并停止,峰值占比: {max_yellow_ratio:.2%}, 总移动距离: {final_distance:.2f}", "完成")
else:
warning(f"未能在限定时间内检测到黄色区域峰值,总移动距离: {final_distance:.2f}", "超时")
return yellow_decreasing
except KeyboardInterrupt:
# 处理键盘中断
ctrl.base_msg.stop()
if observe:
warning("操作被用户中断", "中断")
return False
except Exception as e:
# 处理其他异常
ctrl.base_msg.stop()
if observe:
error(f"发生错误: {str(e)}", "错误")
return False
def run_task_3(ctrl, msg):
section('任务3步态切换', "启动")
info('开始执行任务3...', "启动")
@ -342,4 +504,19 @@ def run_task_3(ctrl, msg):
# pass_up_down(ctrl, msg)
section('任务3-2yellow stop', "开始")
go_until_yellow_area(ctrl, msg, yellow_ratio_threshold=0.15, speed=0.3)
# 原地站立3秒
section("原地站立3秒", "站立")
msg.mode = 11 # Locomotion模式
msg.gait_id = 26 # 自变频步态
msg.duration = 0 # wait next cmd
msg.step_height = [0.06, 0.06] # 抬腿高度
msg.vel_des = [0, 0, 0] # 零速度,原地站立
msg.life_count += 1
ctrl.Send_cmd(msg)
info("开始原地站立3秒", "站立")
time.sleep(3)
info("完成原地站立", "站立")

View File

@ -0,0 +1,132 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import os
import argparse
import matplotlib.pyplot as plt
def analyze_yellow_area_ratio(image_path, debug=False, save_result=False):
"""
专门针对黄色区域的分析算法
参数:
image_path: 图片路径
debug: 是否显示处理过程中的图像用于调试
save_result: 是否保存处理结果图像
返回:
yellow_ratio: 黄色区域占比0-1之间的浮点数
"""
# 读取图片
img = cv2.imread(image_path)
if img is None:
raise ValueError(f"无法读取图片: {image_path}")
# 获取图片文件名(不带路径和扩展名)
filename = os.path.splitext(os.path.basename(image_path))[0]
# 转换为HSV色彩空间更适合颜色分割
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 提取图像的各个通道
h, s, v = cv2.split(hsv)
# 黄色在HSV中的范围色调约为20-30度OpenCV中为10-30
# 黄色通常有较高的饱和度和亮度
yellow_hue_lower = np.array([20, 100, 100])
yellow_hue_upper = np.array([40, 255, 255])
# 创建黄色区域掩码
yellow_mask = cv2.inRange(hsv, yellow_hue_lower, yellow_hue_upper)
# 应用形态学操作
kernel = np.ones((5, 5), np.uint8)
yellow_mask = cv2.morphologyEx(yellow_mask, cv2.MORPH_OPEN, kernel)
yellow_mask = cv2.morphologyEx(yellow_mask, cv2.MORPH_CLOSE, kernel)
# 使用连通区域分析,去除小的噪点区域
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(yellow_mask, connectivity=8)
# 过滤小的连通区域
min_size = 500 # 最小连通区域大小
filtered_yellow_mask = np.zeros_like(yellow_mask)
# 从索引1开始因为0是背景
for i in range(1, num_labels):
if stats[i, cv2.CC_STAT_AREA] >= min_size:
filtered_yellow_mask[labels == i] = 255
# 计算黄色区域占比
height, width = yellow_mask.shape
total_pixels = height * width
yellow_pixels = np.sum(filtered_yellow_mask == 255)
yellow_ratio = yellow_pixels / total_pixels
# 在原图上标记黄色区域
result = img.copy()
overlay = img.copy()
overlay[filtered_yellow_mask > 0] = [0, 165, 255] # 用橙色标记黄色区域
cv2.addWeighted(overlay, 0.4, img, 0.6, 0, result) # 半透明效果
# 显示检测结果信息
cv2.putText(result, f"Yellow Ratio: {yellow_ratio:.2%}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 165, 255), 2)
# 调试模式:显示处理过程图像
if debug:
plt.figure(figsize=(15, 10))
plt.subplot(231)
plt.title("Original Image")
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.subplot(232)
plt.title("Hue Channel")
plt.imshow(h, cmap='hsv')
plt.subplot(233)
plt.title("Saturation Channel")
plt.imshow(s, cmap='gray')
plt.subplot(234)
plt.title("Initial Yellow Mask")
plt.imshow(yellow_mask, cmap='gray')
plt.subplot(235)
plt.title("Filtered Yellow Mask")
plt.imshow(filtered_yellow_mask, cmap='gray')
plt.subplot(236)
plt.title("Yellow Detection Result")
plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
# 保存结果
if save_result:
result_dir = "results"
os.makedirs(result_dir, exist_ok=True)
output_path = os.path.join(result_dir, f"{filename}_yellow_area_result.jpg")
cv2.imwrite(output_path, result)
print(f"结果已保存至: {output_path}")
return yellow_ratio
def main():
parser = argparse.ArgumentParser(description='分析图片中黄色区域占比')
parser.add_argument('--image_path', default='./image_20250525_090252.png', type=str, help='图片路径')
parser.add_argument('--debug', default=False, action='store_true', help='显示处理过程图像')
parser.add_argument('--save', action='store_true', help='保存处理结果图像')
args = parser.parse_args()
try:
yellow_ratio = analyze_yellow_area_ratio(args.image_path, args.debug, args.save)
print(f"黄色区域占比: {yellow_ratio:.2%}")
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()