mi-task/utils/detect_track.py

613 lines
24 KiB
Python
Raw Normal View History

2025-05-14 12:42:01 +08:00
import cv2
import numpy as np
import os
import datetime
from sklearn import linear_model
from utils.log_helper import get_logger, debug, info, warning, error, success
2025-05-14 12:42:01 +08:00
def detect_horizontal_track_edge(image, observe=False, delay=1000, save_log=True):
2025-05-14 12:42:01 +08:00
"""
检测正前方横向黄色赛道的边缘并返回y值最大的边缘点
参数:
image: 输入图像可以是文件路径或者已加载的图像数组
observe: 是否输出中间状态信息和可视化结果默认为False
delay: 展示每个步骤的等待时间(毫秒)
save_log: 是否保存日志和图像
2025-05-14 12:42:01 +08:00
返回:
edge_point: 赛道前方边缘点的坐标 (x, y)
edge_info: 边缘信息字典
"""
observe = False # TSET
2025-05-14 12:42:01 +08:00
# 如果输入是字符串(文件路径),则加载图像
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
if img is None:
error("无法加载图像", "失败")
2025-05-14 12:42:01 +08:00
return None, None
# 获取图像尺寸
height, width = img.shape[:2]
# 计算图像中间区域的范围(用于专注于正前方的赛道)
center_x = width // 2
search_width = int(width * 2/3) # 搜索区域宽度为图像宽度的2/3
search_height = height # 搜索区域高度为图像高度的1/1
left_bound = center_x - search_width // 2
right_bound = center_x + search_width // 2
bottom_bound = height
top_bound = height - search_height
if observe:
debug("步骤1: 原始图像已加载", "加载")
2025-05-14 12:42:01 +08:00
search_region_img = img.copy()
# 绘制搜索区域
cv2.rectangle(search_region_img, (left_bound, top_bound), (right_bound, bottom_bound), (255, 0, 0), 2)
cv2.line(search_region_img, (center_x, 0), (center_x, height), (0, 0, 255), 2) # 中线
cv2.imshow("搜索区域", search_region_img)
cv2.waitKey(delay)
# 转换到HSV颜色空间以便更容易提取黄色
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 黄色的HSV范围
lower_yellow = np.array([20, 100, 100])
upper_yellow = np.array([30, 255, 255])
# 创建黄色的掩码
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 添加形态学操作以改善掩码
kernel = np.ones((3, 3), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
2025-05-14 12:42:01 +08:00
if observe:
debug("步骤2: 创建黄色掩码", "处理")
2025-05-14 12:42:01 +08:00
cv2.imshow("黄色掩码", mask)
cv2.waitKey(delay)
# 应用掩码,只保留黄色部分
yellow_only = cv2.bitwise_and(img, img, mask=mask)
if observe:
debug("步骤3: 提取黄色部分", "处理")
2025-05-14 12:42:01 +08:00
cv2.imshow("只保留黄色", yellow_only)
cv2.waitKey(delay)
# 裁剪掩码到搜索区域
search_mask = mask[top_bound:bottom_bound, left_bound:right_bound]
2025-05-14 12:42:01 +08:00
# 找到掩码在搜索区域中最底部的非零点位置
bottom_points = []
non_zero_cols = np.where(np.any(search_mask, axis=0))[0]
2025-05-14 12:42:01 +08:00
# 寻找每列的最底部点
for col in non_zero_cols:
col_points = np.where(search_mask[:, col] > 0)[0]
if len(col_points) > 0:
bottom_row = np.max(col_points)
bottom_points.append((left_bound + col, top_bound + bottom_row))
2025-05-14 12:42:01 +08:00
if len(bottom_points) < 3:
# 如果找不到足够的底部点使用canny+霍夫变换
edges = cv2.Canny(mask, 50, 150, apertureSize=3)
2025-05-14 12:42:01 +08:00
if observe:
debug("步骤3.1: 边缘检测", "处理")
cv2.imshow("边缘检测", edges)
cv2.waitKey(delay)
# 使用霍夫变换检测直线 - 调低阈值以检测短线段
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=30,
minLineLength=width*0.1, maxLineGap=30)
if lines is None or len(lines) == 0:
if observe:
error("未检测到直线", "失败")
return None, None
2025-05-14 12:42:01 +08:00
if observe:
debug(f"步骤4: 检测到 {len(lines)} 条直线", "处理")
lines_img = img.copy()
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(lines_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("检测到的直线", lines_img)
cv2.waitKey(delay)
# 筛选水平线,但放宽斜率条件
horizontal_lines = []
for line in lines:
x1, y1, x2, y2 = line[0]
# 计算斜率 (避免除零错误)
if abs(x2 - x1) < 5: # 几乎垂直的线
continue
slope = (y2 - y1) / (x2 - x1)
# 筛选接近水平的线 (斜率接近0),但容许更大的倾斜度
if abs(slope) < 0.3:
# 确保线在搜索区域内
if ((left_bound <= x1 <= right_bound and top_bound <= y1 <= bottom_bound) or
(left_bound <= x2 <= right_bound and top_bound <= y2 <= bottom_bound)):
# 计算线的中点y坐标
mid_y = (y1 + y2) / 2
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
# 保存线段、其y坐标和长度
horizontal_lines.append((line[0], mid_y, slope, line_length))
if not horizontal_lines:
if observe:
error("未检测到水平线", "失败")
return None, None
2025-05-14 12:42:01 +08:00
if observe:
debug(f"步骤4.1: 找到 {len(horizontal_lines)} 条水平线", "处理")
h_lines_img = img.copy()
for line_info in horizontal_lines:
line, _, slope, _ = line_info
x1, y1, x2, y2 = line
cv2.line(h_lines_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
# 显示斜率
cv2.putText(h_lines_img, f"{slope:.2f}", ((x1+x2)//2, (y1+y2)//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
cv2.imshow("水平线", h_lines_img)
cv2.waitKey(delay)
2025-05-14 12:42:01 +08:00
# 按y坐标排序 (从大到小,底部的线排在前面)
horizontal_lines.sort(key=lambda x: x[1], reverse=True)
2025-05-14 12:42:01 +08:00
# 取最靠近底部且足够长的线作为横向赛道线
selected_line = None
selected_slope = 0
for line_info in horizontal_lines:
line, _, slope, length = line_info
if length > width * 0.1: # 确保线足够长
selected_line = line
selected_slope = slope
break
2025-05-14 12:42:01 +08:00
if selected_line is None and horizontal_lines:
# 如果没有足够长的线,就取最靠近底部的线
selected_line = horizontal_lines[0][0]
selected_slope = horizontal_lines[0][2]
2025-05-14 12:42:01 +08:00
if selected_line is None:
if observe:
error("无法选择合适的线段", "失败")
return None, None
2025-05-14 12:42:01 +08:00
x1, y1, x2, y2 = selected_line
else:
# 使用底部点拟合直线
if observe:
debug("正在处理底部边缘点", "处理")
bottom_points_img = img.copy()
for point in bottom_points:
cv2.circle(bottom_points_img, point, 3, (0, 255, 0), -1)
cv2.imshow("底部边缘点", bottom_points_img)
cv2.waitKey(delay)
2025-05-14 12:42:01 +08:00
# 使用RANSAC拟合直线以去除异常值
x_points = np.array([p[0] for p in bottom_points]).reshape(-1, 1)
y_points = np.array([p[1] for p in bottom_points])
2025-05-14 12:42:01 +08:00
# 如果点过少或分布不够宽返回None
if len(bottom_points) < 3 or np.max(x_points) - np.min(x_points) < width * 0.1:
if observe:
warning("底部点太少或分布不够宽", "警告")
return None, None
2025-05-14 12:42:01 +08:00
ransac = linear_model.RANSACRegressor(residual_threshold=5.0)
ransac.fit(x_points, y_points)
2025-05-14 12:42:01 +08:00
# 获取拟合参数
selected_slope = ransac.estimator_.coef_[0]
intercept = ransac.estimator_.intercept_
2025-05-14 12:42:01 +08:00
# 检查斜率是否在合理范围内
if abs(selected_slope) > 0.3:
if observe:
warning(f"拟合斜率过大: {selected_slope:.4f}", "警告")
return None, None
# 使用拟合的直线参数计算线段端点
x1 = left_bound
y1 = int(selected_slope * x1 + intercept)
x2 = right_bound
y2 = int(selected_slope * x2 + intercept)
2025-05-14 12:42:01 +08:00
if observe:
debug("显示拟合线段", "处理")
fitted_line_img = img.copy()
cv2.line(fitted_line_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
cv2.imshow("拟合线段", fitted_line_img)
cv2.waitKey(delay)
# 确保x1 < x2
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
# 找到线上y值最大的点作为边缘点(最靠近相机的点)
if y1 > y2:
bottom_edge_point = (x1, y1)
else:
bottom_edge_point = (x2, y2)
2025-05-14 12:42:01 +08:00
# 获取线上的更多点
selected_points = []
step = 5 # 每5个像素取一个点
for x in range(max(left_bound, int(min(x1, x2))), min(right_bound, int(max(x1, x2)) + 1), step):
y = int(selected_slope * (x - x1) + y1)
if top_bound <= y <= bottom_bound:
selected_points.append((x, y))
2025-05-14 12:42:01 +08:00
if observe:
debug(f"步骤5: 找到边缘点 {bottom_edge_point}", "检测")
2025-05-14 12:42:01 +08:00
edge_img = img.copy()
# 画线
cv2.line(edge_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 绘制所有点
for point in selected_points:
2025-05-14 12:42:01 +08:00
cv2.circle(edge_img, point, 3, (255, 0, 0), -1)
# 标记边缘点
cv2.circle(edge_img, bottom_edge_point, 10, (0, 0, 255), -1)
cv2.imshow("选定的横向线和边缘点", edge_img)
cv2.waitKey(delay)
# 计算这个点到中线的距离
distance_to_center = bottom_edge_point[0] - center_x
# 计算中线与检测到的横向线的交点
# 横向线方程: y = slope * (x - x1) + y1
2025-05-14 12:42:01 +08:00
# 中线方程: x = center_x
# 解这个方程组得到交点坐标
intersection_x = center_x
intersection_y = selected_slope * (center_x - x1) + y1
2025-05-14 12:42:01 +08:00
intersection_point = (int(intersection_x), int(intersection_y))
# 计算交点到图像底部的距离(以像素为单位)
distance_to_bottom = height - intersection_y
result_img = None
if observe or save_log:
2025-05-14 12:42:01 +08:00
slope_img = img.copy()
# 画出检测到的线
cv2.line(slope_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 标记边缘点
2025-05-14 12:42:01 +08:00
cv2.circle(slope_img, bottom_edge_point, 10, (0, 0, 255), -1)
# 画出中线
cv2.line(slope_img, (center_x, 0), (center_x, height), (0, 0, 255), 2)
# 标记中线与横向线的交点
2025-05-14 12:42:01 +08:00
cv2.circle(slope_img, intersection_point, 12, (255, 0, 255), -1)
cv2.circle(slope_img, intersection_point, 5, (255, 255, 255), -1)
# 画出交点到底部的距离线
cv2.line(slope_img, intersection_point, (intersection_x, height), (255, 255, 0), 2)
cv2.putText(slope_img, f"Slope: {selected_slope:.4f}", (10, 30),
2025-05-14 12:42:01 +08:00
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(slope_img, f"Distance to center: {distance_to_center}px", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(slope_img, f"Distance to bottom: {distance_to_bottom:.1f}px", (10, 110),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(slope_img, f"中线交点: ({intersection_point[0]}, {intersection_point[1]})", (10, 150),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if observe:
debug("显示边缘斜率和中线交点", "显示")
cv2.imshow("边缘斜率和中线交点", slope_img)
cv2.waitKey(delay)
result_img = slope_img
# 保存日志图像
if save_log and result_img is not None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_dir = "logs/image"
os.makedirs(log_dir, exist_ok=True)
img_path = os.path.join(log_dir, f"horizontal_edge_{timestamp}.jpg")
cv2.imwrite(img_path, result_img)
info(f"保存横向边缘检测结果图像到: {img_path}", "日志")
# 保存文本日志信息
log_info = {
"timestamp": timestamp,
"edge_point": bottom_edge_point,
"distance_to_center": distance_to_center,
"slope": selected_slope,
"distance_to_bottom": distance_to_bottom,
"intersection_point": intersection_point
}
info(f"横向边缘检测结果: {log_info}", "日志")
2025-05-14 12:42:01 +08:00
# 创建边缘信息字典
edge_info = {
"x": bottom_edge_point[0],
"y": bottom_edge_point[1],
"distance_to_center": distance_to_center,
"slope": selected_slope,
"is_horizontal": abs(selected_slope) < 0.05, # 判断边缘是否接近水平
"points_count": len(selected_points), # 该组中点的数量
2025-05-14 12:42:01 +08:00
"intersection_point": intersection_point, # 中线与横向线的交点
"distance_to_bottom": distance_to_bottom, # 交点到图像底部的距离
"points": selected_points # 添加选定的点组
2025-05-14 12:42:01 +08:00
}
return bottom_edge_point, edge_info
# 用法示例
if __name__ == "__main__":
pass
def detect_dual_track_lines(image, observe=False, delay=1000, save_log=True):
"""
检测左右两条平行的黄色轨道线
参数:
image: 输入图像可以是文件路径或者已加载的图像数组
observe: 是否输出中间状态信息和可视化结果默认为False
delay: 展示每个步骤的等待时间(毫秒)
save_log: 是否保存日志和图像
返回:
tuple: (中心线信息, 左轨迹线信息, 右轨迹线信息)
"""
# 如果输入是字符串(文件路径),则加载图像
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
if img is None:
error("无法加载图像", "失败")
return None, None, None
# 获取图像尺寸
height, width = img.shape[:2]
# 计算图像中间区域的范围
center_x = width // 2
# 转换到HSV颜色空间以便更容易提取黄色
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 黄色的HSV范围 - 扩大范围以更好地捕捉不同光照条件下的黄色
lower_yellow = np.array([15, 80, 80]) # 更宽松的黄色下限
upper_yellow = np.array([35, 255, 255]) # 更宽松的黄色上限
# 创建黄色的掩码
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 形态学操作以改善掩码
kernel = np.ones((5, 5), np.uint8) # 增大kernel尺寸
mask = cv2.dilate(mask, kernel, iterations=1)
mask = cv2.erode(mask, np.ones((3, 3), np.uint8), iterations=1) # 添加腐蚀操作去除噪点
if observe:
debug("步骤1: 创建黄色掩码", "处理")
cv2.imshow("黄色掩码", mask)
cv2.waitKey(delay)
# 裁剪底部区域重点关注近处的黄线
bottom_roi_height = int(height * 0.4) # 关注图像底部40%区域
bottom_roi = mask[height-bottom_roi_height:, :]
if observe:
debug("步骤1.5: 底部区域掩码", "处理")
cv2.imshow("底部区域掩码", bottom_roi)
cv2.waitKey(delay)
# 边缘检测
edges = cv2.Canny(mask, 50, 150, apertureSize=3)
if observe:
debug("步骤2: 边缘检测", "处理")
cv2.imshow("边缘检测", edges)
cv2.waitKey(delay)
# 霍夫变换检测直线 - 降低minLineLength以检测到较短的线段
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=25,
minLineLength=width*0.05, maxLineGap=40) # 更宽松的参数
if lines is None or len(lines) == 0:
error("未检测到直线", "失败")
return None, None, None
if observe:
debug(f"步骤3: 检测到 {len(lines)} 条直线", "处理")
lines_img = img.copy()
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(lines_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("检测到的直线", lines_img)
cv2.waitKey(delay)
# 筛选近似垂直的线
vertical_lines = []
for line in lines:
x1, y1, x2, y2 = line[0]
# 优先选择图像底部的线
if y1 < height * 0.5 and y2 < height * 0.5:
continue # 忽略上半部分的线
# 计算斜率 (避免除零错误)
if abs(x2 - x1) < 5: # 几乎垂直的线
slope = 100 # 设置一个较大的值表示接近垂直
else:
slope = (y2 - y1) / (x2 - x1)
# 筛选接近垂直的线 (斜率较大),但允许更多倾斜度
if abs(slope) > 0.75: # 降低垂直线的斜率阈值,允许更多倾斜的线
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
# 计算线的中点x坐标
mid_x = (x1 + x2) / 2
# 计算线的中点y坐标
mid_y = (y1 + y2) / 2
# 保存线段、其坐标、斜率和长度
vertical_lines.append((line[0], mid_x, mid_y, slope, line_length))
if len(vertical_lines) < 2:
error("未检测到足够的垂直线", "失败")
return None, None, None
if observe:
debug(f"步骤4: 找到 {len(vertical_lines)} 条垂直线", "处理")
v_lines_img = img.copy()
for line_info in vertical_lines:
line, _, _, slope, _ = line_info
x1, y1, x2, y2 = line
cv2.line(v_lines_img, (x1, y1), (x2, y2), (0, 255, 255), 2)
# 显示斜率
cv2.putText(v_lines_img, f"{slope:.2f}", ((x1+x2)//2, (y1+y2)//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
cv2.imshow("垂直线", v_lines_img)
cv2.waitKey(delay)
# 优先选择更接近图像底部的线 - 根据y坐标均值排序
vertical_lines.sort(key=lambda x: x[2], reverse=True) # 按mid_y从大到小排序
# 按x坐标将线分为左右两组
left_lines = [line for line in vertical_lines if line[1] < center_x]
right_lines = [line for line in vertical_lines if line[1] > center_x]
# 如果任一侧没有检测到线,则放宽左右两侧线的分组条件
if not left_lines or not right_lines:
# 按x坐标排序所有垂直线
vertical_lines.sort(key=lambda x: x[1])
# 如果有至少两条线,将最左侧的线作为左轨迹线,最右侧的线作为右轨迹线
if len(vertical_lines) >= 2:
left_lines = [vertical_lines[0]]
right_lines = [vertical_lines[-1]]
else:
error("左侧或右侧未检测到轨迹线", "失败")
return None, None, None
# 从左右两组中各选择一条最佳的线
# 优先选择同时满足1. 更靠近底部 2. 足够长 3. 更接近中心的线
def score_line(line_info, is_left):
_, mid_x, mid_y, _, length = line_info
# y越大越靠近底部分数越高
y_score = mid_y / height
# 线越长分数越高
length_score = min(1.0, length / (height * 0.3))
# 与预期位置的接近程度
expected_x = center_x * 0.3 if is_left else center_x * 1.7
x_score = 1.0 - min(1.0, abs(mid_x - expected_x) / (center_x * 0.5))
# 综合评分
return y_score * 0.5 + length_score * 0.3 + x_score * 0.2
# 对左右线组进行评分并排序
left_lines = sorted(left_lines, key=lambda line: score_line(line, True), reverse=True)
right_lines = sorted(right_lines, key=lambda line: score_line(line, False), reverse=True)
left_line = left_lines[0]
right_line = right_lines[0]
# 获取两条线的坐标
left_x1, left_y1, left_x2, left_y2 = left_line[0]
right_x1, right_y1, right_x2, right_y2 = right_line[0]
# 确保线段的顺序是从上到下
if left_y1 > left_y2:
left_x1, left_x2 = left_x2, left_x1
left_y1, left_y2 = left_y2, left_y1
if right_y1 > right_y2:
right_x1, right_x2 = right_x2, right_x1
right_y1, right_y2 = right_y2, right_y1
# 计算中心线
center_line_x1 = (left_x1 + right_x1) // 2
center_line_y1 = (left_y1 + right_y1) // 2
center_line_x2 = (left_x2 + right_x2) // 2
center_line_y2 = (left_y2 + right_y2) // 2
# 计算中心线的斜率
if abs(center_line_x2 - center_line_x1) < 5:
center_slope = 100 # 几乎垂直
else:
center_slope = (center_line_y2 - center_line_y1) / (center_line_x2 - center_line_x1)
# 计算中心线延伸到图像底部的点
if abs(center_slope) < 0.01: # 几乎垂直
bottom_x = center_line_x1
else:
bottom_x = int(center_line_x1 + (height - center_line_y1) / center_slope)
center_point = (bottom_x, height)
# 计算中心线与图像中心线的偏差
deviation = bottom_x - center_x
result_img = None
if observe or save_log:
result_img = img.copy()
# 绘制左右轨迹线
cv2.line(result_img, (left_x1, left_y1), (left_x2, left_y2), (255, 0, 0), 2)
cv2.line(result_img, (right_x1, right_y1), (right_x2, right_y2), (0, 0, 255), 2)
# 绘制中心线
cv2.line(result_img, (center_line_x1, center_line_y1), (center_line_x2, center_line_y2), (0, 255, 0), 2)
cv2.line(result_img, (center_line_x2, center_line_y2), center_point, (0, 255, 0), 2)
# 绘制图像中心线
cv2.line(result_img, (center_x, 0), (center_x, height), (0, 0, 255), 1)
# 标记中心点
cv2.circle(result_img, center_point, 10, (255, 0, 255), -1)
# 显示偏差信息
cv2.putText(result_img, f"Deviation: {deviation}px", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if observe:
cv2.imshow("轨迹线检测结果", result_img)
cv2.waitKey(delay)
# 保存日志图像
if save_log and result_img is not None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_dir = "logs/image"
os.makedirs(log_dir, exist_ok=True)
img_path = os.path.join(log_dir, f"dual_track_{timestamp}.jpg")
cv2.imwrite(img_path, result_img)
info(f"保存双轨迹线检测结果图像到: {img_path}", "日志")
# 保存文本日志信息
log_info = {
"timestamp": timestamp,
"center_point": center_point,
"deviation": deviation,
"left_track_mid_x": left_line[1],
"right_track_mid_x": right_line[1],
"track_width": right_line[1] - left_line[1],
"center_slope": center_slope
}
info(f"双轨迹线检测结果: {log_info}", "日志")
# 创建左右轨迹线和中心线信息
left_track_info = {
"line": left_line[0],
"slope": left_line[3], # 注意索引更改为3因为保存结构更改了
"x_mid": left_line[1]
}
right_track_info = {
"line": right_line[0],
"slope": right_line[3], # 注意索引更改为3
"x_mid": right_line[1]
}
center_info = {
"point": center_point,
"deviation": deviation,
"slope": center_slope,
"is_vertical": abs(center_slope) > 5.0, # 判断是否接近垂直
"track_width": right_line[1] - left_line[1] # 两轨迹线之间的距离
}
return center_info, left_track_info, right_track_info