mi-task/base_move/go_straight.py

434 lines
18 KiB
Python
Raw Normal View History

import math
import time
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from utils.localization_lcmt import localization_lcmt
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
# 创建本模块特定的日志记录器
logger = get_logger("直线移动")
def go_straight(ctrl, msg, distance, speed=0.5, observe=False,
mode=11,
gait_id=26,
step_height=[0.06, 0.06],
):
"""
控制机器人沿直线行走指定距离
参数:
ctrl: Robot_Ctrl 对象包含里程计信息
msg: robot_control_cmd_lcmt 对象用于发送命令
distance: 要行走的距离()正值为前进负值为后退
speed: 行走速度(/)范围0.1~1.0默认为0.5
observe: 是否输出中间状态信息默认为False
返回:
bool: 是否成功完成行走
"""
# 参数验证
if abs(distance) < 0.01:
info("距离太短,无需移动", "信息")
return True
# 限制速度范围
speed = min(max(abs(speed), 0.1), 1.0)
# 确定前进或后退方向
forward = distance > 0
move_speed = speed if forward else -speed
abs_distance = abs(distance)
# 获取起始位置
start_position = list(ctrl.odo_msg.xyz)
start_yaw = ctrl.odo_msg.rpy[2] # 记录起始朝向,用于保持直线
if observe:
debug(f"起始位置: {start_position}", "位置")
info(f"开始{'前进' if forward else '后退'} {abs_distance:.3f}米,速度: {abs(move_speed):.2f}米/秒", "移动")
# 在起点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(start_position[0], start_position[1],
start_position[2] if len(start_position) > 2 else 0.0,
'green', observe=True)
# 设置移动命令
msg.mode = mode # Locomotion模式
msg.gait_id = gait_id # 自变频步态
# 根据需要移动的距离动态调整移动速度
if abs_distance > 1.0:
actual_speed = move_speed # 距离较远时用设定速度
elif abs_distance > 0.5:
actual_speed = move_speed * 0.8 # 中等距离略微降速
elif abs_distance > 0.2:
actual_speed = move_speed * 0.6 # 较近距离降低速度
else:
actual_speed = move_speed * 0.4 # 非常接近时用更慢速度
# 设置移动速度和方向
msg.vel_des = [actual_speed, 0, 0] # [前进速度, 侧向速度, 角速度]
msg.duration = 0 # wait next cmd
msg.step_height = step_height # 抬腿高度
msg.life_count += 1
# 发送命令
ctrl.Send_cmd(msg)
# 估算移动时间,但实际上会通过里程计控制
estimated_time = abs_distance / abs(actual_speed)
timeout = estimated_time + 3 # 增加超时时间为预计移动时间加3秒
# 使用里程计进行实时监控移动距离
distance_moved = 0
start_time = time.time()
last_position = start_position
# 动态调整参数
angle_correction_threshold = 0.05 # 角度偏差超过多少弧度开始修正
slow_down_ratio = 0.85 # 当移动到目标距离的85%时开始减速
completion_threshold = 0.95 # 当移动到目标距离的95%时停止
position_check_interval = 0.1 # 位置检查间隔(秒)
last_check_time = start_time
# 监控移动距离
while distance_moved < abs_distance * completion_threshold and time.time() - start_time < timeout:
current_time = time.time()
# 按固定间隔检查位置,减少计算负担
if current_time - last_check_time >= position_check_interval:
# 获取当前位置和朝向
current_position = ctrl.odo_msg.xyz
current_yaw = ctrl.odo_msg.rpy[2]
# 计算已移动距离
dx = current_position[0] - start_position[0]
dy = current_position[1] - start_position[1]
distance_moved = math.sqrt(dx*dx + dy*dy)
# 根据前进或后退确定期望方向
expected_direction = start_yaw if forward else (start_yaw + math.pi) % (2 * math.pi)
# 使用IMU朝向数据计算角度偏差
yaw_error = current_yaw - expected_direction
# 角度归一化
while yaw_error > math.pi:
yaw_error -= 2 * math.pi
while yaw_error < -math.pi:
yaw_error += 2 * math.pi
# 计算完成比例
completion_ratio = distance_moved / abs_distance
# 根据距离完成情况调整速度
if completion_ratio > slow_down_ratio:
# 计算减速系数
slow_factor = 1.0 - (completion_ratio - slow_down_ratio) / (1.0 - slow_down_ratio)
# 确保不会减速太多
slow_factor = max(0.2, slow_factor)
new_speed = actual_speed * slow_factor
if observe and abs(new_speed - msg.vel_des[0]) > 0.05:
info(f"减速: {msg.vel_des[0]:.2f} -> {new_speed:.2f} 米/秒 (完成: {completion_ratio*100:.1f}%)", "移动")
msg.vel_des[0] = new_speed
msg.life_count += 1
ctrl.Send_cmd(msg)
# 如果偏离初始方向,进行角度修正
# if abs(yaw_error) > angle_correction_threshold:
# # 计算角速度修正值,偏差越大修正越强
# angular_correction = -yaw_error * 0.5 # 比例系数可调整
# # 限制最大角速度修正
# angular_correction = max(min(angular_correction, 0.2), -0.2)
# if observe and abs(angular_correction) > 0.05:
# warning(f"方向修正: 偏差 {math.degrees(yaw_error):.1f}度,应用角速度 {angular_correction:.3f}rad/s", "角度")
# # 应用角速度修正
# msg.vel_des[2] = angular_correction
# msg.life_count += 1
# ctrl.Send_cmd(msg)
# elif msg.vel_des[2] != 0:
# # 如果方向已修正,重置角速度
# msg.vel_des[2] = 0
# msg.life_count += 1
# ctrl.Send_cmd(msg)
if observe and current_time - start_time > 1 and (current_time % 0.5 < position_check_interval):
debug(f"已移动: {distance_moved:.3f}米, 目标: {abs_distance:.3f}米 (完成: {completion_ratio*100:.1f}%)", "距离")
debug(f"当前速度: [{msg.vel_des[0]:.2f}, {msg.vel_des[1]:.2f}, {msg.vel_des[2]:.2f}]", "移动")
# 更新最后检查时间和位置
last_check_time = current_time
last_position = current_position
time.sleep(0.01) # 小间隔检查位置
# 平滑停止
if hasattr(ctrl.base_msg, 'stop_smooth'):
ctrl.base_msg.stop_smooth()
else:
ctrl.base_msg.stop()
# 获取最终位置和实际移动距离
final_position = ctrl.odo_msg.xyz
dx = final_position[0] - start_position[0]
dy = final_position[1] - start_position[1]
actual_distance = math.sqrt(dx*dx + dy*dy)
if observe:
success(f"移动完成,从里程计计算的移动距离: {actual_distance:.3f}", "完成")
# 在终点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(final_position[0], final_position[1],
final_position[2] if len(final_position) > 2 else 0.0,
'red', observe=True)
# 判断是否成功完成
distance_error = abs(actual_distance - abs_distance)
go_success = distance_error < 0.1 # 如果误差小于10厘米则认为成功
if observe:
info(f"目标距离: {abs_distance:.3f}米, 实际距离: {actual_distance:.3f}米, 误差: {distance_error:.3f}", "距离")
if go_success:
success(f"移动成功", "成功")
else:
warning(f"移动失败,误差过大: {distance_error:.3f}", "失败")
return go_success
def go_straight_until_bar(ctrl, msg, distance, speed=0.5, observe=False):
"""
控制机器人沿直线行走指定距离直到检测到栏杆
"""
pass
def go_straight_with_qrcode(ctrl, msg, distance, speed=0.5, observe=False):
"""
控制机器人沿直线行走指定距离同时扫描二维码
参数:
ctrl: Robot_Ctrl 对象包含里程计信息
msg: robot_control_cmd_lcmt 对象用于发送命令
distance: 要行走的距离()正值为前进负值为后退
speed: 行走速度(/)范围0.1~1.0默认为0.5
observe: 是否输出中间状态信息默认为False
返回:
tuple: (bool, str) - (是否成功完成行走, 扫描到的QR码内容)
"""
# 返回此任务的中间状态
res = {}
qr_result = None
# 启动异步QR码扫描
if hasattr(ctrl, 'image_processor') and ctrl.image_processor is not None:
try:
ctrl.image_processor.start_async_scan(interval=0.2)
if observe:
info("已启动异步QR码扫描", "扫描")
except Exception as e:
if observe:
error(f"启动QR码扫描失败: {e}", "失败")
else:
if observe:
warning("无法启用QR码扫描image_processor不存在", "警告")
# 参数验证
if abs(distance) < 0.01:
info("距离太短,无需移动", "信息")
# 停止异步扫描
if hasattr(ctrl, 'image_processor') and ctrl.image_processor is not None:
ctrl.image_processor.stop_async_scan()
return True, None
# 限制速度范围
speed = min(max(abs(speed), 0.1), 1.0)
# 确定前进或后退方向
forward = distance > 0
move_speed = speed if forward else -speed
abs_distance = abs(distance)
# 获取起始位置
start_position = list(ctrl.odo_msg.xyz)
start_yaw = ctrl.odo_msg.rpy[2] # 记录起始朝向,用于保持直线
if observe:
debug(f"起始位置: {start_position}", "位置")
info(f"开始{'前进' if forward else '后退'} {abs_distance:.3f}米,速度: {abs(move_speed):.2f}米/秒", "移动")
# 在起点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(start_position[0], start_position[1],
start_position[2] if len(start_position) > 2 else 0.0,
'green', observe=True)
# 设置移动命令
msg.mode = 11 # Locomotion模式
msg.gait_id = 26 # 自变频步态
# 根据需要移动的距离动态调整移动速度
if abs_distance > 1.0:
actual_speed = move_speed # 距离较远时用设定速度
elif abs_distance > 0.5:
actual_speed = move_speed * 0.8 # 中等距离略微降速
elif abs_distance > 0.2:
actual_speed = move_speed * 0.6 # 较近距离降低速度
else:
actual_speed = move_speed * 0.4 # 非常接近时用更慢速度
# 设置移动速度和方向
msg.vel_des = [actual_speed, 0, 0] # [前进速度, 侧向速度, 角速度]
msg.duration = 0 # wait next cmd
msg.step_height = [0.06, 0.06] # 抬腿高度
msg.life_count += 1
# 发送命令
ctrl.Send_cmd(msg)
# 估算移动时间,但实际上会通过里程计控制
estimated_time = abs_distance / abs(actual_speed)
timeout = estimated_time + 3 # 增加超时时间为预计移动时间加3秒
# 使用里程计进行实时监控移动距离
distance_moved = 0
start_time = time.time()
last_position = start_position
last_qr_check_time = start_time
qr_check_interval = 0.3 # QR码检查间隔时间(秒)
# 动态调整参数
angle_correction_threshold = 0.05 # 角度偏差超过多少弧度开始修正
slow_down_ratio = 0.85 # 当移动到目标距离的85%时开始减速
completion_threshold = 0.95 # 当移动到目标距离的95%时停止
position_check_interval = 0.1 # 位置检查间隔(秒)
last_check_time = start_time
# 监控移动距离
while distance_moved < abs_distance * completion_threshold and time.time() - start_time < timeout:
current_time = time.time()
# 按固定间隔检查位置,减少计算负担
if current_time - last_check_time >= position_check_interval:
# 获取当前位置和朝向
current_position = ctrl.odo_msg.xyz
current_yaw = ctrl.odo_msg.rpy[2]
# 计算已移动距离
dx = current_position[0] - start_position[0]
dy = current_position[1] - start_position[1]
distance_moved = math.sqrt(dx*dx + dy*dy)
# 根据前进或后退确定期望方向
expected_direction = start_yaw if forward else (start_yaw + math.pi) % (2 * math.pi)
# 使用IMU朝向数据计算角度偏差
yaw_error = current_yaw - expected_direction
# 角度归一化
while yaw_error > math.pi:
yaw_error -= 2 * math.pi
while yaw_error < -math.pi:
yaw_error += 2 * math.pi
# 计算完成比例
completion_ratio = distance_moved / abs_distance
# 根据距离完成情况调整速度
if completion_ratio > slow_down_ratio:
# 计算减速系数
slow_factor = 1.0 - (completion_ratio - slow_down_ratio) / (1.0 - slow_down_ratio)
# 确保不会减速太多
slow_factor = max(0.2, slow_factor)
new_speed = actual_speed * slow_factor
if observe and abs(new_speed - msg.vel_des[0]) > 0.05:
info(f"减速: {msg.vel_des[0]:.2f} -> {new_speed:.2f} 米/秒 (完成: {completion_ratio*100:.1f}%)", "移动")
msg.vel_des[0] = new_speed
msg.life_count += 1
ctrl.Send_cmd(msg)
if observe and current_time - start_time > 1 and (current_time % 0.5 < position_check_interval):
debug(f"已移动: {distance_moved:.3f}米, 目标: {abs_distance:.3f}米 (完成: {completion_ratio*100:.1f}%)", "距离")
debug(f"当前速度: [{msg.vel_des[0]:.2f}, {msg.vel_des[1]:.2f}, {msg.vel_des[2]:.2f}]", "移动")
# 更新最后检查时间和位置
last_check_time = current_time
last_position = current_position
# 检查QR码扫描结果
if current_time - last_qr_check_time >= qr_check_interval:
if hasattr(ctrl, 'image_processor') and ctrl.image_processor is not None:
qr_data, scan_time = ctrl.image_processor.get_last_qr_result()
if qr_data and scan_time > start_time:
qr_result = qr_data
if observe:
success(f"在移动过程中扫描到QR码: {qr_data}", "扫描")
last_qr_check_time = current_time
time.sleep(0.01) # 小间隔检查位置
# 平滑停止
if hasattr(ctrl.base_msg, 'stop_smooth'):
ctrl.base_msg.stop_smooth()
else:
ctrl.base_msg.stop()
# 获取最终位置和实际移动距离
final_position = ctrl.odo_msg.xyz
dx = final_position[0] - start_position[0]
dy = final_position[1] - start_position[1]
actual_distance = math.sqrt(dx*dx + dy*dy)
# 停止异步扫描
if hasattr(ctrl, 'image_processor') and ctrl.image_processor is not None:
ctrl.image_processor.stop_async_scan()
# 移动完成后再检查一次QR码扫描结果
last_qr_data, last_scan_time = ctrl.image_processor.get_last_qr_result()
if last_qr_data and (qr_result is None or last_scan_time > last_qr_check_time):
qr_result = last_qr_data
if observe:
success(f"移动完成后最终扫描到QR码: {last_qr_data}", "扫描")
if observe:
success(f"移动完成,从里程计计算的移动距离: {actual_distance:.3f}", "完成")
# 在终点放置标记
if hasattr(ctrl, 'place_marker'):
ctrl.place_marker(final_position[0], final_position[1],
final_position[2] if len(final_position) > 2 else 0.0,
'red', observe=True)
# 判断是否成功完成
distance_error = abs(actual_distance - abs_distance)
go_success = distance_error < 0.1 # 如果误差小于10厘米则认为成功
if observe:
info(f"目标距离: {abs_distance:.3f}米, 实际距离: {actual_distance:.3f}米, 误差: {distance_error:.3f}", "距离")
if go_success:
success(f"移动成功", "成功")
else:
warning(f"移动失败,误差过大: {distance_error:.3f}", "失败")
if qr_result:
success(f"成功扫描到QR码: {qr_result}", "扫描结果")
else:
warning("未扫描到任何QR码", "扫描结果")
# 将QR码结果添加到res字典中
res['qr_result'] = qr_result
return go_success, res
# 用法示例
if __name__ == "__main__":
# 这里是示例代码实际使用时需要提供合适的ctrl和msg对象
# 前进1米
# go_straight(ctrl, msg, 1.0, speed=0.5, observe=True)
# 后退0.5米
# go_straight(ctrl, msg, -0.5, speed=0.3, observe=True)
pass