mi-task/task_4/task_4.py

185 lines
7.2 KiB
Python
Raw Normal View History

import time
import sys
import os
import cv2
import numpy as np
import math
# 添加父目录到路径以便能够导入utils
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from base_move.turn_degree import turn_degree, turn_degree_v2
from base_move.go_straight import go_straight, go_lateral
from utils.log_helper import LogHelper, get_logger, section, info, debug, warning, error, success, timing
from utils.gray_sky_analyzer import analyze_gray_sky_ratio
from utils.detect_track import detect_horizontal_track_edge
from utils.detect_dual_track_lines import detect_dual_track_lines
from base_move.move_base_hori_line import calculate_distance_to_line
from task_4.pass_bar import pass_bar
from base_move.center_on_dual_tracks import center_on_dual_tracks
from task_3.task_3 import pass_stone
# 创建本模块特定的日志记录器
logger = get_logger("任务4")
observe = True
STONE_DISTANCE = 4.0 # TODO 距离参数需要微调
RED_RATIO_THRESHOLD = 0.35 # TODO 红色区域比例阈值需要微调
def run_task_4(ctrl, msg):
section('任务4-1直线移动', "移动")
pass_stone(ctrl, msg, distance=STONE_DISTANCE)
section('任务4-2移动直到红色区域比例大于阈值', "红色检测")
go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2)
section('任务4-3通过栏杆', "移动")
pass_bar(ctrl, msg)
def run_task_4_back(ctrl, msg):
"""
参数:
ctrl: Robot_Ctrl对象
msg: 控制消息对象
image_processor: 可选的图像处理器实例
"""
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False)
go_straight(ctrl, msg, distance=2, speed=1, observe=True)
center_on_dual_tracks(ctrl, msg, max_deviation=10.0, observe=False)
# TODO 向右移动0.5秒 (或许不需要了)
# section('任务4-回程:向右移动', "移动")
# go_lateral(ctrl, msg, distance=-0.1, speed=0.15, observe=True) # DEBUG
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
section('任务4-1移动直到灰色天空比例低于阈值', "天空检测")
go_straight_until_red_bar(ctrl, msg, red_ratio_threshold=RED_RATIO_THRESHOLD, speed=0.2)
section('任务4-2通过栏杆', "移动")
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
pass_bar(ctrl, msg)
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
section('任务4-3stone', "移动")
go_straight(ctrl, msg, distance=1, speed=2)
turn_degree_v2(ctrl, msg, degree=-90, absolute=True)
# Use enhanced calibration for better Y-axis correction on stone path
# go_straight(ctrl, msg, distance=4.5, speed=0.35, mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True)
pass_stone(ctrl, msg, distance=STONE_DISTANCE)
# go_straight_with_enhanced_calibration(ctrl, msg, distance=4.5, speed=0.35,
# mode=11, gait_id=3, step_height=[0.21, 0.21], observe=True)
section('任务4-3前进直到遇到黄线 - 石板路', "移动")
# 使用新创建的函数直走直到遇到黄线并停在距离黄线0.5米处
# 获取相机高度
camera_height = 0.355 # 单位: 米 # INFO from TF-tree
edge_point, edge_info = detect_horizontal_track_edge(ctrl.image_processor.get_current_image(), observe=True, save_log=True)
current_distance = calculate_distance_to_line(edge_info, camera_height, observe=True)
go_straight(ctrl, msg, distance=current_distance, speed=0.20, mode=11, gait_id=3, step_height=[0.21, 0.21])
def go_straight_until_red_bar(ctrl, msg,
red_ratio_threshold=0.2,
step_distance=0.5,
max_distance=5,
speed=0.3
):
"""
控制机器人沿直线行走直到红色区域比例高于指定阈值
参数:
ctrl: Robot_Ctrl对象
msg: 控制命令消息对象
red_ratio_threshold: 红色区域比例阈值当检测到的比例高于此值时停止
step_distance: 每次移动的步长()
max_distance: 最大移动距离()防止无限前进
speed: 移动速度(/)
返回:
bool: 是否成功找到红色区域比例高于阈值的位置
"""
def analyze_red_area_ratio(image):
"""
分析图像中红色区域的占比
输入: BGR图像
返回: 红色区域占比 (0~1)
"""
# 转换到HSV空间
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# 红色有两个区间
lower_red1 = np.array([0, 70, 50])
upper_red1 = np.array([10, 255, 255])
lower_red2 = np.array([160, 70, 50])
upper_red2 = np.array([180, 255, 255])
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
mask = cv2.bitwise_or(mask1, mask2)
red_pixels = np.count_nonzero(mask)
total_pixels = mask.shape[0] * mask.shape[1]
ratio = red_pixels / total_pixels if total_pixels > 0 else 0
return ratio
total_distance = 0
success_flag = False
# 设置移动命令
msg.mode = 11 # Locomotion模式
msg.gait_id = 26 # 自变频步态
msg.step_height = [0.06, 0.06] # 抬腿高度
while total_distance < max_distance:
# 获取当前图像
current_image = ctrl.image_processor.get_current_image('ai')
if current_image is None:
warning("无法获取图像,等待...", "图像")
time.sleep(0.5)
continue
# 分析红色区域比例
try:
red_ratio = analyze_red_area_ratio(current_image)
info(f"当前红色区域比例: {red_ratio:.2%}", "分析")
# 如果红色区域比例高于阈值,停止移动
if red_ratio > red_ratio_threshold:
success(f"检测到红色区域比例({red_ratio:.2%})高于阈值({red_ratio_threshold:.2%}),停止移动", "完成")
success_flag = True
break
except Exception as e:
error(f"分析图像时出错: {e}", "错误")
# 继续前进一段距离
info(f"继续前进 {step_distance} 米...", "移动")
# 设置移动速度和方向
msg.vel_des = [speed, 0, 0] # [前进速度, 侧向速度, 角速度]
msg.duration = 0 # wait next cmd
msg.life_count += 1
# 发送命令
ctrl.Send_cmd(msg)
# 估算前进时间
move_time = step_distance / speed
time.sleep(move_time)
# 累计移动距离
total_distance += step_distance
info(f"已移动总距离: {total_distance:.2f}", "距离")
# 平滑停止
if hasattr(ctrl.base_msg, 'stop_smooth'):
ctrl.base_msg.stop_smooth()
else:
ctrl.base_msg.stop()
if not success_flag and total_distance >= max_distance:
warning(f"已达到最大移动距离 {max_distance} 米,但未找到红色区域比例高于 {red_ratio_threshold:.2%} 的位置", "超时")
return success_flag