mi-task/test/text-image/text_image.py

181 lines
6.1 KiB
Python
Raw Normal View History

2025-08-21 12:51:13 +08:00
import cv2
import numpy as np
import os
from pathlib import Path
2025-08-21 14:04:38 +08:00
def preprocess_image(image):
2025-08-21 12:51:13 +08:00
"""
2025-08-21 14:04:38 +08:00
预处理图像转换为HSV色彩空间检测白色区域
2025-08-21 12:51:13 +08:00
"""
# 转换为HSV色彩空间
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
2025-08-21 14:04:38 +08:00
# 定义白色的HSV范围 - 放宽范围
# 白色在HSV中饱和度低明度高
# 原来的范围lower_white = np.array([0, 0, 200]), upper_white = np.array([180, 30, 255])
# 放宽后的范围:
lower_white = np.array([0, 0, 150]) # 降低明度下限从200降到150
upper_white = np.array([180, 60, 255]) # 提高饱和度上限从30提高到60
2025-08-21 12:51:13 +08:00
# 创建白色掩码
white_mask = cv2.inRange(hsv, lower_white, upper_white)
2025-08-21 14:04:38 +08:00
# 形态学操作:开运算去除小噪点,闭运算填充小孔
2025-08-21 12:51:13 +08:00
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
2025-08-21 14:04:38 +08:00
cleaned = cv2.morphologyEx(white_mask, cv2.MORPH_OPEN, kernel)
cleaned = cv2.morphologyEx(cleaned, cv2.MORPH_CLOSE, kernel)
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
return cleaned
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
def find_white_rectangles(binary_image):
2025-08-21 12:51:13 +08:00
"""
2025-08-21 14:04:38 +08:00
查找白色矩形区域
2025-08-21 12:51:13 +08:00
"""
2025-08-21 14:04:38 +08:00
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 筛选合适的矩形轮廓
valid_rectangles = []
2025-08-21 12:51:13 +08:00
for contour in contours:
area = cv2.contourArea(contour)
2025-08-21 14:04:38 +08:00
if area > 200: # 过滤太小的区域从500降低到200
# 计算轮廓的边界矩形
2025-08-21 12:51:13 +08:00
x, y, w, h = cv2.boundingRect(contour)
2025-08-21 14:04:38 +08:00
# 计算轮廓的近似多边形
epsilon = 0.02 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# 检查是否为四边形(矩形)
if len(approx) == 4:
# 计算宽高比
aspect_ratio = w / h
# 矩形应该有合理的宽高比(不是太细长)
if 0.3 < aspect_ratio < 3.0:
valid_rectangles.append((contour, (x, y, w, h), approx))
return valid_rectangles
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
def analyze_white_region(roi, original_roi):
2025-08-21 12:51:13 +08:00
"""
2025-08-21 14:04:38 +08:00
分析白色区域的特征
2025-08-21 12:51:13 +08:00
"""
2025-08-21 14:04:38 +08:00
# 计算白色像素比例
total_pixels = roi.shape[0] * roi.shape[1]
white_pixels = np.sum(roi == 255)
white_ratio = white_pixels / total_pixels
# 计算区域的形状特征
height, width = roi.shape
aspect_ratio = width / height
# 计算边缘强度(白色区域应该有清晰的边缘)
edges = cv2.Canny(original_roi, 50, 150)
edge_density = np.sum(edges > 0) / total_pixels
return {
'white_ratio': white_ratio,
'aspect_ratio': aspect_ratio,
'edge_density': edge_density,
'area': total_pixels
}
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
def detect_white_rectangles_in_image(image_path):
2025-08-21 12:51:13 +08:00
"""
2025-08-21 14:04:38 +08:00
检测图片中的白色矩形区域
2025-08-21 12:51:13 +08:00
"""
# 读取图像
image = cv2.imread(image_path)
if image is None:
print(f"无法读取图像: {image_path}")
2025-08-21 14:04:38 +08:00
return []
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 预处理
white_mask = preprocess_image(image)
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 查找白色矩形
valid_rectangles = find_white_rectangles(white_mask)
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
results = []
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
for contour, (x, y, w, h), approx in valid_rectangles:
# 提取ROI
roi_mask = white_mask[y:y+h, x:x+w]
roi_original = image[y:y+h, x:x+w]
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 分析特征
features = analyze_white_region(roi_mask, roi_original)
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 判断是否为有效的白色矩形
is_valid_white_rectangle = (
features['white_ratio'] > 0.4 and # 白色像素比例要求降低从0.6降到0.4
features['edge_density'] > 0.005 # 边缘密度要求降低从0.01降到0.005
)
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
if is_valid_white_rectangle:
results.append({
'type': 'white_rectangle',
'position': (x, y, w, h),
'features': features,
'confidence': 'high' if features['white_ratio'] > 0.8 else 'medium'
})
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 在图像上绘制结果
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(image, f"白色矩形", (x, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# 绘制轮廓点
cv2.drawContours(image, [approx], -1, (255, 0, 0), 2)
return image, results
2025-08-21 12:51:13 +08:00
def main():
"""
2025-08-21 14:04:38 +08:00
主函数测试白色矩形检测
2025-08-21 12:51:13 +08:00
"""
# 图片路径
img_dir = Path("imgs")
2025-08-21 14:04:38 +08:00
img1_path = img_dir / "1.jpg"
img2_path = img_dir / "2.jpg"
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
print("开始检测图片中的白色矩形区域...")
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
# 检测第一张图片
if img1_path.exists():
print(f"\n检测图片: {img1_path}")
result_img1, results1 = detect_white_rectangles_in_image(str(img1_path))
2025-08-21 12:51:13 +08:00
2025-08-21 14:04:38 +08:00
print("检测结果:")
for result in results1:
print(f" 类型: {result['type']}, 位置: {result['position']}, 置信度: {result['confidence']}")
print(f" 特征: 白色比例={result['features']['white_ratio']:.2f}, "
f"宽高比={result['features']['aspect_ratio']:.2f}")
2025-08-21 12:51:13 +08:00
# 保存结果图片
2025-08-21 14:04:38 +08:00
output_path1 = img_dir / "result_1.jpg"
cv2.imwrite(str(output_path1), result_img1)
print(f"结果图片已保存到: {output_path1}")
# 检测第二张图片
if img2_path.exists():
print(f"\n检测图片: {img2_path}")
result_img2, results2 = detect_white_rectangles_in_image(str(img2_path))
print("检测结果:")
for result in results2:
print(f" 类型: {result['type']}, 位置: {result['position']}, 置信度: {result['confidence']}")
print(f" 特征: 白色比例={result['features']['white_ratio']:.2f}, "
f"宽高比={result['features']['aspect_ratio']:.2f}")
# 保存结果图片
output_path2 = img_dir / "result_2.jpg"
cv2.imwrite(str(output_path2), result_img2)
print(f"结果图片已保存到: {output_path2}")
print("\n检测完成!")
2025-08-21 12:51:13 +08:00
if __name__ == "__main__":
main()